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Abstract—Multistability and hysteresis are widely occurring
phenomena in devices, leading to many misconceptions among
compact model developers. In this paper, we show how hysteretic
devices can be modelled in general using only continuous/smooth
primitives in a differential equation format suitable for simulation,
and how the models can be implemented properly in languages
like Verilog-A and ModSpec (MATLAB R©). Apart from the generic
formalism, several concrete device examples are described and
analyzed, including a new compact model for ESD protection de-
vices, new memristor models, a simplified electro-thermal model for
HBTs, and a modified Stoner-Wohlfarth model for ferromagnets.
Common features of these models are studied to further illustrate
the modelling methodology for multistability and hysteresis in
devices.

I. Introduction
Many devices feature multiple stable equilibrium points. For

example, in ESD protection devices, a phenomenon known as
“snapback” in the I–V characteristic curves allows the devices
to draw different amounts of current at the same input voltage,
depending on the occurrence of impact ionization [1]. Similarly,
recently developed memristive devices can be in either high-
or low-resistance state when powered off, depending on the
voltages that have been applied to them before [2, 3]. It has
also been observed that HBT models can have multiple possible
voltage biases generating the same current when considering
thermal effects [4]. Another example is from magnetics — bi-
stable magnetization under a small external magnetic field is a
crucial property in ferromagnetic materials and devices [5]. In
such devices with multistability, sweeping their inputs up and
down often generates hysteresis, i.e., a looping behaviour in the
input–output (I–O) graph.

  1 real i;

  2 analog begin

  3     if V(br) < -1

  4         i = -1;

  5     if V(br) > +1

  6         i = +1;

  7     I(br) <+ i;

  8 end

V(br)

I(br)

+1-1 0

+1

-1

Fig. 1: Example of problematic Verilog-A code for modelling I–V hysteresis.

These device properties are often difficult to model properly,
or understand intuitively. In fact, compact model developers are
often befuddled by them, resulting in a plethora of problematic
models. Figure 1 shows a very simple example; similar code
with if-else statements and memory states1 for modelling
hysteresis can be found as part of several published compact
models for ESD clamps [8] and memristors [9, 10]. Therefore,
in this paper, we would like to first clarify several common

1A memory state, or hidden state [6], in Verilog-A is a variable used without
assigning a value. They should be avoided in compact models [7].

confusions about the multistability and hysteresis observed in
devices.

Firstly, although multistability normally implies that there will
be a sudden jump in a device’s response when sweeping its input,
it does not mean there has to be discontinuity in the model
equations. It doesn’t justify the use of if-else statements
either. In fact, continuous and smooth model equations can also
create abrupt changes in device responses; designing such smooth
equations is the key in modelling multistability and hysteresis
properly.

Moreover, although hysteresis implies time dependence be-
tween inputs and outputs, it does not mean the device has to
know the absolute time. Neither does it need to access the
input at which it was evaluated at the last time point. In fact,
a properly written compact model should not be specific to
time-dependent simulation algorithms; it should run in other
analyses, such as DC, small signal AC, Harmonic Balance, etc.,
as well. Several existing compact models [9, 11] incorporate
I–V hysteresis by accessing $abstime and implementing time
integration inside; their use is limited to only transient simulation.
There are also Verilog-A models that use memory states for
storing and accessing the input value in the previous device
evaluation, limiting their robustness in PSS simulations [6].

Another misconception is that a model needs to be an
analog behaviour model [12] to have hysteresis. This leads to
the use of many simulator directives, e.g., @initial_step,
analysis(), @cross(), $bound_step(), etc., whereas
these constructs are in fact unnecessary for modelling hysteresis,
and should be avoided [7, 13].

Multistability does not mean ill-posedness [14] — it does
not mean there has to be a region in the state space with
zero derivatives to keep the device output from moving. While
some models [11, 15] use such “flat” regions for modelling
multistability, this approach results in singular circuit Jacobian
matrices and undefined model behaviours in these regions.

In fact, the basic requirements on a device model with
multistability and hysteresis are no different from those on
general compact models — the model should still be formulated
in the Differential Algebraic Equation (DAE) format [16]; it
should use continuous/smooth functions and should be well-
posed [14, 17, 18]. In this paper, we explain the correct generic
way of modelling and analyzing devices with multistability and
hysteresis. In Sec. II, we start by considering a simple two-
terminal device. We show that by including an internal state
variable and designing its dynamics properly, I–V hysteresis
can be included in the model. Specifically, we show how



a key property of the model — a single continuous/smooth
curve in the state space that contains all the steady state
solutions, is connected to the well-posedness of the model, and
how a negative-sloped fold in the curve results in the abrupt
transitions observed in device responses. In the meanwhile, we
also demonstrate the usefulness of the homotopy analysis [19],
which was originally developed mainly to aid DC convergence,
in characterizing and analyzing hysteretic devices. Then we
write this example model both in the ModSpec format [20],
which is the DAE format for specifying devices in the Berkeley
MAPP [21, 22], and in the Verilog-A language. For the Verilog-A
implementation, we use the most consistently supported features
of the language, such that the model will run in all main-stream
simulators, including Spectre R©, HSPICE and Xyce.

Then from Sec. III to Sec. VI, we apply the insights gained
from studying the generic hysteretic model in Sec. II to more
concrete device examples. In Sec. III, we study the snapback
phenomenon in ESD clamps. By introducing an internal state
representing the occurrence of impact ionization and designing a
fold in its DC solution curve, we develop a compact model
for ESD clamps that not only captures the snapback and
multistability phenomena in the devices, but also includes the
time dependence of ionization. It also works robustly in circuit
simulations.

In Sec. IV, we consider memristor models as another example.
Existing models for memristive devices all suffer from issues
related to mathematical ill-posedness. In particular, as noted in
[18], they don’t generate correct DC responses. We show that
the reason for the DC failure is indeed the lack of a single DC
solution curve in steady state. Guided by the model template, we
propose well-posed models for memristors. They preserve the
accuracy and physics in existing models, while fixing their model
problems. The result is a collection of models for various types
of memristors, all working in all the common circuit analyses
in major simulators.

The insight of modelling hysteresis via constructing a con-
tinuous DC curve with a fold is useful not just for designing
new models, but also for analyzing the problems with existing
ones. It is known that HBT models with thermal effects can
have uniqueness problems [4]. In Sec. V, we use the same
simulation techniques to reproduce a multistable voltage problem
in a simplified electro-thermal HBT model, and show that the
multistability originates from the same mechanism. Furthermore,
this insight also guides us in fixing the uniqueness problem when
multistability is undesired in the model.

For ferromagnetic devices, in Sec. VI, we study the Stoner-
Wohlfarth model [23] that captures the response of a magnet’s
internal magnetization to an external magnetic field. It is known
that the SW model suffers from problems related to unbounded
unknowns; we show that it corresponds to having infinite number
of DC solution curves in the state space. Furthermore, once we
redefine the variable of simulation and fix the unboundedness
problem, a single DC curve shows up, bringing this magnetic
model into our modelling framework as well.

We would like to note that the models developed and studied in
this paper all consist of relatively simple equations; the purpose
is to illustrate the modelling methodology for devices with

multistability and hysteresis. More complex versions of them,
with more physical effects taken into consideration, are part of
the future work.

II. How to Model Hysteresis Properly

In this section, we first study how to model I–V hysteresis
in two-terminal devices properly. The equation of a general
two-terminal device without memory can be written as

I(t) = f (V (t)), (1)
where V (t) is the voltage across the device, I(t) the current
through it. For example, f (V (t)) = V (t)

R describes a simple linear
resistor.

For devices with I–V hysteresis, I(t) and V (t) cannot have a
simple algebraic mapping like (1). Instead, we introduce a state
variable s(t) into (1) and rewrite the I–V relationship as

I(t) = f1(V (t), s(t)). (2)

The dynamics of the internal state variable s(t) is governed
by a differential equation:

d
dt

s(t) = f2(V (t), s(t)). (3)

In this formulation, we cannot directly calculate the current
based on the voltage applied to the device at a single time t; I(t)
also depends on the value of s(t). On the other hand, at time t,
the value of s(t) is determined by the history of V (t) according
to (3). Therefore, we can think of the device as having internal
“memory” of the history of its input. If we choose the formula
for f1 and f2 in (2) and (3) properly, as we sweep the input
voltage, hysteresis in the current becomes possible.

In the rest of this paper, (2) and (3) serve as a model template
for devices with I–V hysteresis. To illustrate its use, we design
a device example, namely “hys_example”, with functions f1
and f2 defined as follows.

f1(V (t), s(t)) =
V (t)

R
·0.5 · (s(t)+1). (4)

f2(V (t), s(t)) =
1
τ
(tanh(K · (V (t)+2 · s(t)))− s(t)) . (5)

The choice of f1 is easy to understand. If we assume s(t) is
within (−1,1), incorporating 0.5 ·(s(t)+1) as a factor modulates
the conductance of the device between 0 and 1/R. The choice
of f2 determines the dynamics of s(t). And when f2 = 0, the
corresponding (V , s) pairs will show up as part of the DC
solutions of circuits containing this device. Therefore, if we
visualize the values of f2 in a contour plot, such as in Figure 2
(a), the curve representing f2 = 0 is especially important. In (5),
through the use of the tanh function plus a linear term in s, we
design the f2 = 0 curve to fold back in the middle, crossing
the V = 0 axis three times. In this way, when V is around 0,
there are three possible values s can settle on, all satisfying
d
dt s(t) = f2 = 0. This multiple stability in state variable s is the
foundation of hysteresis found in the DC sweeps on the device.

Figure 2 (b) illustrates how hysteresis takes place in DC
sweeps. In Figure 2 (b), we divide the f2 = 0 curve into three
parts: curve A and B have positive slopes while C has a negative
one. When we sweep V towards the right at a very slow speed to
approximate DC conditions, starting from a negative value left
of V−, at the beginning, there is only one possible DC solution
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Fig. 2: Contour plot of f2 function in (5) and predicted s-V hysteresis curve based on the
sign of f2.

of s. As we increase V , the (V , s) pair will move along curve
A, until A ends when V reaches V+. If V increases slightly
beyond V+, multiple stability in s disappears. (V , s) reaches the
f2 > 0 region and s will grow until it reaches the B part of the
f2 = 0 curve. This shows up in the DC solutions as a sudden
jump of s towards curve B. Similarly, when we sweep V in the
other direction starting from the right of V+, the (V , s) pair will
follow curve B, then have a sudden shift to A at V−. Because
V+>V−, hysteresis occurs in s when sweeping V , as illustrated
in Figure 2 (b). Since s modulates the device’s conductance,
there will also be hysteresis in the I–V relationship.

Note that the analysis of the origin of hysteresis does not
involve absolute time. It is the fold in the DC solution curve
defined by f2(v, s)= 0 that generates multiple stable equilibriums
in the device, which then result in abrupt changes and hysteresis
when sweeping the device’s input. As mentioned earlier, s can
be thought of as encoding the memory of V from the past. Its
multiple equilibriums reflect the different possible sets of history
of V . And the separation between V+ and V− in the DC curves
ensures that no matter at what speed we sweep V , there will
always be hysteresis in the s–V relationship.

Model equations for hys_example defined in (4) and (5)
can be written as a compact model into the Berkeley MAPP
using the ModSpec format. The ModSpec format specifies a
device model in the following formulation [20, 21].

~z =
d
dt
~qe(~x,~y)+~f e(~x,~y,~u), (6)

0 =
d
dt
~qi(~x,~y)+~f i(~x,~y,~u). (7)

Vectors ~x and ~z contain the device’s I/Os – inputs/outputs re-
lated to the circuit’s connectivity:~z comprises those I/Os that can
be expressed explicitly (for hys_example, it contains only I),
while~x comprises those that cannot (for hys_example, it is V ).
~y contains the model’s internal unknowns (for hys_example,
it is s), while~u provides a mechanism for specifying time-varying
inputs within the device (e.g., as in independent voltage or current
sources). The functions ~qe, ~f e, ~qi and ~f i define the differential
and algebraic parts of the model’s explicit and implicit equations.

For hys_example, we can write its model equations in the
ModSpec format as follows.

~f e(~x,~y,~u) =
~x
R
· (tanh(~y)+1), ~qe(~x,~y) = 0,

~f i(~x,~y,~u) = tanh(K · (~x+2 ·~y))−~y, ~qi(~x,~y) =−τ ·~y,
(8)

with ~x = [V ], ~y = [s], ~z = [I], ~u = [].

1 function MOD = hys_ModSpec()
2 MOD = ee_model();
3 MOD = add_to_ee_model(MOD, ’name’, ’hys’);

4 MOD = add_to_ee_model(MOD, ’terminals’, {’p’, ’n’});
5 MOD = add_to_ee_model(MOD, ’explicit_outs’, {’ipn’});
6 MOD = add_to_ee_model(MOD, ’internal_unks’, {’s’});
7 MOD = add_to_ee_model(MOD, ’implicit_eqn_names’, {’ds’});
8 MOD = add_to_ee_model(MOD, ’parms’, {’R’, 1e3, ...
9 ’K’, 1, ’tau’, 1e-3});

10 MOD = add_to_ee_model(MOD, ’fqei’, {@fe, @qe, @fi, @qi});
11 MOD = finish_ee_model(MOD);
12 end % hys_ModSpec
13

14 function out = fe(S)
15 v2struct(S); % populates workspace with vpn/R/K/tau
16 out = vpn/R * 0.5 * (1+s); % ipn
17 end % fe
18

19 function out = qe(S)
20 out = 0; % ipn
21 end % qe
22

23 function out = fi(S)
24 v2struct(S);
25 out = tanh(K*(vpn + 2*s)) - s;
26 end % fi
27

28 function out = qi(S)
29 v2struct(S);
30 out = - tau * s;
31 end % qi

Listing 1: hys_example_ModSpec.m

We can enter the model information in (8) into MAPP by
constructing a ModSpec object MOD. The code in Listing 1 shows
how to create this device model for hys_example entirely
in the MATLAB R© language. For more detailed description of
the ModSpec format, users can issue the command “help
ModSpec_concepts” in MAPP.

We can then simulate the model specified with Listing 1 using
MAPP in various circuit analyses. Figure 3 shows the results
from DC sweep and transient simulation with input voltage
sweeping up and down. It confirms that hysteresis takes place
in both I–V and s–V relationships of the device.

(b) (c)

+

−

(a)

Fig. 3: Results from DC sweep and transient simulation in MAPP, showing hysteresis in
both s and i1 when sweeping the input voltage, in either type of the analyses.

When we sweep V back and forth, curve C, the one with a
negative slope in Figure 2 (b) never shows up in solutions. The
reason is that, although it also consists of solutions of f2 = 0,
these solutions are not stable. With a little perturbation, whether
from physical noise or numerical error, a (V , s) point on curve
C will move to either A or B. These unstable solutions can be
captured using the homotopy analysis [19]. Homotopy analysis
can track the DC solution curve in the state space. Results from
homotopy analysis are shown in Figure 4. We note that all the
circuit’s DC solutions indeed form a smooth curve in the state
space. The side view of the 3-D plot displays curve C we have
designed in our model equation (5). The corresponding curve in
the top view connects the two discontinuous DC sweep curves
in Figure 3; it consists of all the unstable solutions in the I–V
relationship. These results from homotopy analysis provide us
with important insights into the model. They reveal that there



is a single smooth and continuous DC solution curve in the
state space, which is an indicator of the well-posedness of the
model. They also illustrate that it is the fold in the smooth DC
solution curve that has created the discontinuities in DC sweep
results. These insights are important for the proper modelling
of hysteresis.

(a) (b) (c)

Fig. 4: Results from homotopy analysis in MAPP: (a) 3-D view of all the DC solutions;
(b) top view of the DC solutions shows the folding in the I–V characteristic curve,
explaining the I–V hysteresis from DC and transient voltage sweeps in Figure 3;
(c) side view of the DC solutions.

Moreover, the top view explains the use of internal state s for
modelling hysteresis from another angle. Without the internal
state, it would be difficult if not impossible to write a single
equation describing the I–V relationship shown in Figure 4
(b). With the help of s, we can easily choose two simple model
equations as (4) and (5), and the complex I–V relationship forms
naturally.

1 ‘include "disciplines.vams"
2 module hys(p, n);
3 inout p, n;
4 electrical p, n, ns;
5 parameter real R = 1e3 from (0:inf);
6 parameter real K = 1 from (0:inf);
7 parameter real tau = 1e-3 from (0:inf);
8 real s;
9

10 analog begin
11 s = V(ns, n);
12 I(p, n) <+ V(p, n)/R * 0.5 * (1+s);
13 I(ns, n) <+ tanh(K*(V(p, n) + 2*s)) - s;
14 I(ns, n) <+ ddt(-tau*s);
15 end
16 endmodule

Listing 2: hys_example.va

hys_example can also be implemented in the Verilog-A
language. Apart from the differences in syntax, Verilog-A differs
from ModSpec in one key aspect — the way of handling internal
unknowns and implicit equations. Verilog-A models a device with
an internal circuit topology, i.e., with internal nodes and branches
defined just like in a subcircuit. The variables in a Verilog-A
model, the “sources” and “probes”, are potentials and flows
specified based on this topology. Coming from this subcircuit
perspective, the language doesn’t provide a straightforward way
of dealing with general internal unknowns and implicit equations
inside the model, e.g., the state variable s and the equation (3)
in hys_example.

As a result, an internal unknown is often declared as a general
variable using the real statement. idt(), $abstime and
hard-coded time integration methods are often used for describing
implicit differential equations. These approaches should be
avoided in modelling [7, 18]. Instead, in this paper, we show
how to properly model both the state variable s by considering
it as a voltage, and the implicit equation by treating it as the
KCL at an internal node. As in Listing 2, we declare an internal
branch, whose voltage represents s. One end of the branch is an
internal node that doesn’t connect to any other branches. In this

way, by contributing tanh(K · (V +2 · s))− s and ddt(-tau *
s) both to this same branch, the KCL at the internal node will
enforce the implicit differential equation in (5).

Declaring s as a voltage is not the only way to model
hys_example in Verilog-A. Depending on the physical nature
of s, one can also use Verilog-A’s multiphysics support and
model it as a potential in other desciplines. One can also switch
potential and flow by defining s as a flow instead. The essence
of our approach is to recognize that state variable s is a circuit
unknown, and thus should be modelled as a potential or flow in
Verilog-A, for the consistent support from different simulators
in various circuit analyses.

III. Modelling ESD Snapback
ESD protection devices feature a phenomenon known as

snapback — the current through a device does not monotonically
grow with the input voltage, but folds back within a certain
voltage range. This fold in the I–V graph can be observed
in Transmission Line Pulse (TLP) measurements. It physically
means that, when the device is put in a circuit, as its input
voltage increases beyond a certain trigger point, namely Vt1,
impact ionization begins to happen and the amount of current
through the device suddenly jumps. And the high current can
sustain itself when the voltage is swept back to Vt1; the device
will turn “off” only at a lower voltage when the current drops
below a hold current IH , corresponding to a voltage VIH normally
smaller than Vt1. In between VIH and Vt1, the device can have
different currents depending on whether it is in the “on” or “off”
state.

To incorporate such devices in circuit simulation, some special-
ized algorithms have been developed [24, 25]. As for compact
models, some physics-based ones leverage existing models for
BJTs and MOS devices and design subcircuits around them for
approximating the device structure and characteristics [26–28].
In comparison, behavioural models for ESD clamps [1, 29, 30]
have much lower model complexity, which simplifies parameter
extraction significantly and provides more intuitions into the
operation of the devices. Among the available behavioural
models, [1] is the first to be able to capture the time dependence
in the on/off transition in ESD protection devices. The model
discussed in this section is based on it.

From the discussion in Sec. II, we note the similarity between
the ESD snapback behaviour and the model template we have
developed for a general hysteretic device. This indicates that the
multistability observed in ESD protection devices can also be
modelled by introducing a state variable s, and designing a fold
in the steady state curve of its dynamics. Adapted from [1], we
model the I–V relationship as

I = Io f f + s · Ion, (9)
where Ion and Io f f are empirical equations for on-state and
off-state currents:

Ion = Gon · (V −VH) , (10)

Io f f = IS · e−V/VT ·

√
1+

max(V,0)
VD

. (11)

Here, s is a state variable between 0 and 1; it is an indicator
of whether impact ionization is present. It should grow to 1



when V >Vt1, and fall back to 0 when V <VIH ; in between, it
can have multiple steady state values.

The dynamics of this state variable can be modelled in similar
ways as discussed in Sec. II. In the formulation of the growth
of s in (5), the steady state of s is naturally limited to (−1, 1);
we convert it to (0, 1) by using s∗ = 2 · (s−0.5) in (5) instead.
Similarly, in (5), when the voltage across the device is swept
up and down, the transition voltage thresholds are around ±1;
we bring these thresholds to Vt1 and VIH by first convert V to
V ∗ before putting it in (5).

V ∗ =
2

Vt1 −VIH
· (V −0.5 ·Vt1 −0.5 ·VIH ). (12)

Then the dynamic of the internal ionization indicator state is
modelled as follows.

τ · d
dt

s = tanh(K · (V ∗+2 · s∗))− s∗. (13)

This is essentially the same f2 function in the model template
from Sec. II, with its steady state solutions forming a similar
curve as in Figure 2 with a similar negative-sloped fold in the
middle. The fold explains the multiple stable currents within
(VIH , Vt1), as well as the I–V hysteresis in the device. Equations
(9) and (13) then constitute a behavioural model for ESD
protection devices.

1 function MOD = ESD_snapback_ModSpec()
2 MOD = ee_model();
3 MOD = add_to_ee_model(MOD, ’name’, ’ESD snapback’);
4 MOD = add_to_ee_model(MOD, ’terminals’, {’p’, ’n’});
5 MOD = add_to_ee_model(MOD, ’explicit_outs’, {’ipn’});
6 MOD = add_to_ee_model(MOD, ’internal_unks’, {’s’});
7 MOD = add_to_ee_model(MOD, ’implicit_eqn_names’, {’ds’});
8 MOD = add_to_ee_model(MOD, ’parms’, {’Gon’, 0.01,...
9 ’VH’, 16, ’VT1’, 48, ’VIH’, 26, ’Is’, 1e-12,...

10 ’VT’, 0.026, ’VD’, 0.7, ’K’, 1, ’tau’, 1e-9,...
11 ’C’, 1e-13, ’maxslope’, 1e15, ’smoothing’, 1e-10});
12 MOD = add_to_ee_model(MOD, ’fqei’, {@fe, @qe, @fi, @qi});
13 MOD = finish_ee_model(MOD);
14 end
15

16 function out = fe(S)
17 v2struct(S);
18 Ion = smoothclip(Gon*(vpn - VH), smoothing)...
19 - smoothclip(-Gon*VH, smoothing);
20 Ioff = Is * (1 - safeexp(-vpn/VT, maxslope))...
21 * sqrt(1 + max(vpn, 0)/VD);
22 out = Ioff + s * Ion; % ipn
23 end
24

25 function out = qe(S)
26 v2struct(S);
27 out = C * vpn;
28 end
29

30 function out = fi(S)
31 v2struct(S);
32 Vstar = 2*(vpn-0.5*VT1-0.5*VIH)/(VT1-VIH);
33 sstar = 2*(s-0.5);
34 out = tanh(K*(Vstar + 2*sstar)) - sstar;
35 end
36

37 function out = qi(S)
38 v2struct(S);
39 out = -tau*s;
40 end

Listing 3: ESD_snapback_ModSpec.m

1 ‘include "disciplines.vams"
2 module ESDsnapback(p, n);
3 inout p, n;
4 electrical p, n, ns;
5

6 parameter real Gon = 0.1 from (0:inf);
7 parameter real VH = 16 from (0:inf);

8 parameter real VT1 = 48 from (0:inf);
9 parameter real VIH = 26 from (0:inf);

10 parameter real Is = 1e-12 from (0:inf);
11 parameter real VT = 0.026 from (0:inf);
12 parameter real VD = 0.7 from (0:inf);
13 parameter real K = 1 from (0:inf);
14 parameter real C = 1e-13 from [0:inf);
15 parameter real tau = 1e-9 from (0:inf);
16 parameter real maxslope = 1e15 from (0:inf);
17 parameter real smoothing = 1e-10 from (0:inf);
18 real s, Ion, Ioff, Vstar, sstar;
19

20 analog function real smoothclip;
21 input x, smoothing;
22 real x, smoothing;
23 begin
24 smoothclip = 0.5*(sqrt(x*x + smoothing) + x);
25 end
26 endfunction // smoothclip
27

28 analog begin
29 s = V(ns, n);
30 Ion = smoothclip(Gon*(V(p, n)-VH), smoothing)
31 - smoothclip(-Gon*VH, smoothing);
32 Ioff = Is * (1 - limexp(-V(p, n)/VT))
33 * sqrt(1 + max(V(p, n), 0)/VD);
34 Vstar = 2*(V(p, n)-0.5*VT1-0.5*VIH)/(VT1-VIH);
35 sstar = 2*(s-0.5);
36 I(p, n) <+ Ioff + s * Ion;
37 I(p, n) <+ ddt(C * V(p, n));
38 I(ns, n) <+ tanh(K*(Vstar + 2*sstar)) - sstar;
39 I(ns, n) <+ ddt(-tau*s);
40 end
41 endmodule

Listing 4: ESD_snapback.va

The code implementation in ModSpec and Verilog-A are
shown in Listing 3 and Listing 4 respectively. Figure 5 shows
simulation results from MAPP. Results from DC and transient
voltage sweeps are overlaid, demonstrating the hysteresis in
the I–V graph; homotopy results are plotted in Figure 5 (b),
confirming the fold we have designed in the model’s steady state
curve. Transient results in Figure 5 (a) also show that ionization
does not happen instantaneously; same as [1], our model captures
the time dependence of impact ionization. Moreover, on top of
[1], our model also captures the I–V hysteresis in DC sweeps.
And it does so without sacrificing the model’s smoothness or
its robustness in simulation. The model works well in various
circuits. As an illustration, we simulate an ESD clamp with the
HBM configuration in Figure 6. Transient results confirm that it
implements a clamp at VIH ≈ 30V .

(a) (b)V (V) V (V)

I 
(A

)

I 
(A

)

Fig. 5: Forward/backward DC, transient voltage sweep responses, and homotopy analysis
results from the ESD clamp model in Listing 3.

Note that there is certain arbitrariness in the choice of the
equation for the dynamics of the internal state; we are simply
reusing the equation in (5) to illustrate the idea of modelling ESD
snapback with a fold in the model’s steady state solution curve.
The transition points in (5) are not exactly ±1, and the exact
value of d/dt s is mainly controlled by the order of the time
constant parameter τ . This choice is partly due to the fact that
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Fig. 6: HBM test bench for an ESD clamp and transient simulation results for the voltage
across the clamp.

there are currently no well-established formulae for the growth
rate of impact ionization. Making the ionization dynamics more
physical is part of the future research in the development of
simulation-ready ESD clamp models.

IV. RRAM and Memristor Models
An RRAM is a memristive device consisting of two metal

electrodes and a thin oxide film separating them. Depending
on whether a conductive filament in the film connects the
electrodes, the device can be in either low- or high-resistance
state. Therefore, the internal state variable for RRAM models
can be defined as the gap between the tip of the filament and the
opposing electrode. By filling in the model template in Sec. II
and designing the f1 equation for current calculation and f2
for gap dynamics, we will have compact models for RRAM
devices.

Among the existing models for RRAMs and other memristive
devices, the formula for f1 are mostly consistent [9, 10, 15, 31].
In this section, we choose to use the f1 function in [9, 10]:

f1(V, gap) = I0 · exp(−gap
g0

) · sinh(
V
V0

), (14)

where I0, g0, V0 are fitting parameters.

For f2, we can adapt the gap growth formulation in [9, 10]
and write it as

f2(V, gap) =−v0 · exp(−Ea

VT
) · sinh(

V · γ ·a0

tox ·VT
), (15)

where v0, Ea, a0 are fitting parameters, tox is the thickness of
the oxide film, VT = k ·T/q is the thermal voltage, and γ is the
local field enhancement factor [32].

While there are small differences among the f2 functions in
models developed by various groups [9, 10, 15, 31], they differ
mainly in the definitions of fitting parameters. A property they all
share is that the sign of f2 is the same as that of (−sinh(vtb)).
Put in other words, gap begins to decrease whenever vtb is
positive, and vice versa, as illustrated in Figure 7 (a). While
there is some physical truth to this statement, considering that an
RRAM device will eventually be destroyed if applied a constant
voltage for an indefinite amount of time, for the model to work in
numerical simulation, the state variable gap has to be bounded.
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Fig. 7: Illustration of several choices of f2 in RRAM model.

Ensuring that the upper and lower bounds for gap are always
respected in simulation is one major challenge for the compact
modelling of RRAM devices. To address this challenge, several
approaches have been attempted in the existing RRAM compact
models. Some models [9, 10] directly use if-then-else
statements on gap. They declare gap as a real variable
in Verilog-A, then directly enforce “if (gap < 0) gap =
0;”. This practice excludes the model from the differential
equation framework; they are not suitable for simulation analyses.
Another category of models multiply the f2 in (15) with a
window function [11, 15, 31] that sets d

dt gap = f2 = 0 when
gap = maxGap and gap = minGap. Such a window function
is constructed either by directly using step() functions [31],
or by adapting from some smooth windows, such as Joglekar
[33], Biolek and Prodromakis windows [34]. However, there are
subtle and deeper problems with this approach. The problems
can be illustrated by analyzing the sign and zero-crossings of
function f2 shown in Figure 7 (b). The f2 = 0 curves consist
of three lines: the maxGap and minGap lines, and the V = 0
line, with two intersections. Some parts of these lines, such
as the ones for (gap > maxGap), (V > 0, gap ≈ maxGap) and
(V < 0, gap ≈ minGap), are model artifacts rather than physical
steady state solutions. The existence of multiple DC curves can
result in unphysical results in DC and transient simulations, and
also cause convergence issues for homotopy analysis [18].

In this paper, we try to bound variable gap while keeping
the DC solutions in a single continuous curve, illustrated as the
f2 = 0 curve in Figure 7 (c). This is inspired by studying the
model template hys_example in Sec. II. The sign and zero-
crossing of f2 for our RRAM model are closely related to those of
the f2 function for hys_example (shown in (5)). To construct
the desired f2 = 0 solution curve, we modify the original f2 in
(15) by adding clipping terms to it that are smooth and continuous.
The clipping terms can also leave the values from the original f2
function in (15) almost intact when minGap < gap < maxGap.
The code implementations in ModSpec and Verilog-A are shown
in Listing 5 and Listing 6 respectively. Simulations in various
simulators confirm that the models work robustly; some transient
simulation results from MAPP are provided in Figure 8.

1 function MOD = RRAM_ModSpec()
2 MOD = ee_model();
3 MOD = add_to_ee_model(MOD, ’name’, ’RRAM’);
4 MOD = add_to_ee_model(MOD, ’terminals’, {’t’, ’b’});
5 MOD = add_to_ee_model(MOD, ’explicit_outs’, {’itb’});
6 MOD = add_to_ee_model(MOD, ’internal_unks’, {’Gap’});
7 MOD = add_to_ee_model(MOD, ’implicit_eqn_names’,...
8 {’dGap’});
9 MOD = add_to_ee_model(MOD, ’parms’, {’g0’, 0.25,...

10 ’V0’, 0.25, ’I0’, 1e-3, ’Vel0’, 10,...
11 ’Beta’, 0.8, ’gamma0’, 16, ’Ea’, 0.6,...
12 ’a0’, 0.25, ’tox’, 12});
13 MOD = add_to_ee_model(MOD, ’parms’, {’maxGap’, 1.7,...
14 ’minGap’, 0, ’maxslope’, 1e15,...
15 ’smoothing’, 1e-8, ’Kclip’, 50, ’GMIN’, 1e-12});
16 MOD = add_to_ee_model(MOD, ’fqei’, {@fe,@qe,@fi,@qi});
17 MOD = finish_ee_model(MOD);
18 end
19

20 function out = fe(S)
21 v2struct(S);
22 out = I0*safeexp(-Gap/g0, maxslope) ...
23 * safesinh(vtb/V0, maxslope) + GMIN*vtb;
24 end
25

26 function out = qe(S)
27 out = 0; % itb
28 end
29



30 function out = fi(S)
31 v2struct(S);
32 T = 300;
33 k = 1.3806226e-23; % Boltzmann’s Constant
34 q = 1.6021918e-19; % Electron Charge
35 Gamma = gamma0 - Beta * Gapˆ3;
36 ddt_Gap = - Vel0 * exp(- q*Ea/k/T) ...
37 * safesinh(vtb*Gamma*a0/tox*q/k/T, maxslope);
38 Fw1 = smoothstep(minGap-Gap, smoothing);
39 Fw2 = smoothstep(Gap-maxGap, smoothing);
40 clip_minGap = (safeexp(Kclip*(minGap-Gap), maxslope) ...
41 - ddt_Gap) * Fw1;
42 clip_maxGap = (-safeexp(Kclip*(Gap-maxGap), maxslope) ...
43 - ddt_Gap) * Fw2;
44 out = ddt_Gap + clip_minGap + clip_maxGap;
45 end
46

47 function out = qi(S)
48 v2struct(S);
49 out = - 1e-9 * Gap;
50 end

Listing 5: RRAM_ModSpec.m

1 ‘include "disciplines.vams"
2 ‘include "constants.vams"
3 module RRAM(t, b);
4 inout t, b;
5 electrical t, b, nGap;
6 parameter real g0 = 0.25 from (0:inf);
7 parameter real V0 = 0.25 from (0:inf);
8 parameter real Vel0 = 10 from (0:inf);
9 parameter real I0 = 1e-3 from (0:inf);

10 parameter real Beta = 0.8 from (0:inf);
11 parameter real gamma0 = 16 from (0:inf);
12 parameter real Ea = 0.6 from (0:inf);
13 parameter real a0 = 0.25 from (0:inf);
14 parameter real tox = 12 from (0:inf);
15

16 parameter real maxGap = 1.7 from (0:inf);
17 parameter real minGap = 0.0 from (0:inf);
18

19 parameter real smoothing = 1e-8 from (0:inf);
20 parameter real GMIN = 1e-12 from (0:inf);
21 parameter real Kclip = 50 from (0:inf);
22

23 real Gap, ddt_gap, Gamma, Fw1, Fw2;
24 real clip_minGap, clip_maxGap;
25

26 analog function real smoothstep;
27 input x, smoothing;
28 real x, smoothing;
29 begin
30 smoothstep = 0.5*(x/sqrt(x*x + smoothing)+1);
31 end
32 endfunction // smoothstep
33

34 analog begin
35 Gap = V(nGap, b);
36 I(t, b) <+ I0 * limexp(-Gap/g0) * sinh(V(t, b)/V0)
37 + GMIN*V(t, b);
38

39 Gamma = gamma0 - Beta * pow(Gap, 3);
40 ddt_gap = -Vel0 * exp(-Ea/$vt) * sinh(V(t, b)
41 * Gamma*a0/tox/$vt);
42

43 Fw1 = smoothstep(minGap-Gap, smoothing);
44 Fw2 = smoothstep(Gap-maxGap, smoothing);
45 clip_minGap = (limexp(Kclip*(minGap-Gap))
46 - ddt_gap) * Fw1;
47 clip_maxGap = (-limexp(Kclip*(Gap-maxGap))
48 - ddt_gap) * Fw2;
49

50 I(nGap, b) <+ ddt_gap + clip_minGap + clip_maxGap;
51 I(nGap, b) <+ ddt(-1e-9*Gap);
52 end
53 endmodule

Listing 6: RRAM.va

While the intention of adding the clipping terms is to set up
bounds for variable gap and to construct DC solution curve
in Figure 7 (c), there is also some physical justification to our
approach. As a physical quantity, gap is indeed bounded by

(a) (b)

Fig. 8: Transient results on the circuit (same as in Figure 3) with a voltage source connected
to an RRAM device.

definition. Therefore, d
dt gap = f2 cannot look like Figure 7 (a)

or (b) in reality. The f2 = 0 curves must have the A and B parts
labelled in Figure 7 (c). One can think of the clipping terms as
infinite amount of resisting “force” to keep gap from decreasing
below minGap, or increasing beyond maxGap. The analogy is
the modelling of MEMS switches, where the switching beam’s
position is often used as an internal state variable. This variable
reaches its bound when the switching beam hits the opposing
electrode (often the substrate). The position does not move
further. The beam cannot move into the electrode because of
the huge force resisting it from causing any shape change in the
structures. Similarly, in RRAM modelling, if the variable gap
represents it physical meaning accurately, one can expect such
“forces” to exist to make it a bounded quantity. This physics
intuition matches well with our proposed numerical technique
of using fast growing exponential components to enforce the
bounds.
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Fig. 9: f2 function in VTEAM memristor model contains a flat region around V = 0 for
the modelling of DC hysteresis. The proper way is to design a single solution curve
of f2 = 0 that folds back around V = 0.

Note that the DC curve for the RRAM model in Figure 7
(c) does not bend with an opposite slope in the middle; the
model is at the “cusp” of hysteresis and multistability. This
matches physical reality, since RRAMs are considered non-
volatile memories only within a certain data retention time. Apart
from RRAMs, several compact models are designed for other
memristive devices, including those with true DC hysteresis.
As mentioned in Sec. I, they [11, 15] use regions with flat f2
functions for modelling the multistability, resulting in the zeros-
crossings of f2 forming an area shown in Figure 9 (a). From
the discussion in this paper, to model the same effect in these
memristive devices while respecting the well-posedness of the
model, the steady state curve should resemble the one shown
in Figure 9 (b) instead. Once we have this understanding, it
becomes easy to design the f2 functions in more memristor
models [18] to bring about the desired DC solution curve as in
Figure 9 (b).



V. HBT Model with Thermal Effects

It has been known that HBT models with thermal effects
can have issues with multiple stable DC operating points [4].
This phenomenon can create convergence issues in simulation,
and is also in general confusing to both model developers and
circuit designers. Its origin is discussed in [4]. In this section,
we show that the reason multistability and hysteresis arise from
a perfectly smooth model can again be explained by a fold in the
DC solution curve. Furthermore, we also show how this insight
can be used to modify this model behaviour.

b

c

e

dT

+

-

CthRth

Fig. 10: Simplified electro-thermal HBT model.

The core of a HBT DC model with thermal effects is sketched
in Figure 10. It consists of two back-to-back diodes for modelling
the junctions in a HBT device; the bipolar amplifying effect
is modelled via a voltage-controlled current source (VCCS),
multiplying the forward and reverse diode currents by βF and
βR respectively. The thermal effect is modelled by modulating
βF with temperature:

βF = βF0 −dβF ·dT, (16)
where dT is the temperature relative to room temperature. The
higher dT , the lower βF , the smaller the amplifying effects. The
dynamics of temperature is governed by the power dissipation
(mostly Vce · Ice), and the thermal resistance/capacitance
associated the dissipation.

Vb

1k
Vc

(a) (b)Vc

Ic

Fig. 11: Test bench and characteristic curves of the electro-thermal HBT model.

Without thermal effects, when the HBT is biased as in
Figure 11, the model generates characteristic curves with a
saturated Ice after Vce reaches certain thresholds. With thermal
effects, as Vce increases, power dissipation grows, leading to
a rising temperature, which in return lowers Ice. As a result,
the characteristic curves bend down, as shown in Figure 11 (b).
With certain choices of parameters, the curves can begin crossing
each other [4] — the same Ice can result from different Vbe
biases.

The existence of multistability indicates that when the current
drawn from a HBT device is varied smoothly, the number of
solutions for the voltage biases can change, resulting in sudden
changes in voltages. As an illustration, in Figure 12, we connect
a HBT device in diode mode, with a 1k resistor between its
collector and base nodes. When different currents are drawn
from the device, multistability in voltages can be observed
as discontinuous solutions in DC sweeps. Again, the reason
discontinuity arises from smooth model equations is that there
is a fold in the steady state curve. Homotopy can be applied to
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Fig. 12: Results from DC sweeps and homotopy for a test circuit of a HBT device.

track this curve and also calculate the unstable solutions missing
from DC sweeps. In each slice of the state space, i.e., in the
V(c)–Ic, V(b)–Ic, dT–Ic plots in Figure 12, a fold that completes
the disconnected DC sweep curves can be seen.

There are several implications from these results. Firstly, it
confirms that the multistability and hysteresis observed in HBT
models indeed also arise from a fold in the DC curve; it agrees
with our generic formalism in this paper nicely. The results also
show the usefulness of homotopy analysis in the analysis and
understanding of device models.

V(c) (V)

V(b) (V)

dT (100 oC)

Fig. 13: DC solutions of the test circuit in Figure 12 with the modified HBT model.

Furthermore, the understanding gained from the results and
discussions in this paper can help remove the multistability in
HBT models when it is undesired in some applications. From
Figure 12, multiple stable temperatures constitute part of the fold.
If we set up an upper bound for temperature, i.e., we prevent it
from growing high enough to enter the folding back region, the
entire DC solution curve will change shape, i.e., multistability
in not only the temperature, but also V(b)/V(c) voltages will all
disappear. Setting up a dTmax has been mentioned in [4], but
there is no description of how it can be achieved in a physical way
without turning the HBT model into an analog behavioural model.
From our discussion on the memristor models, similar clipping
effect can be designed by changing the thermal resistance Rth
to be nonlinear:

Rth = smoothstep(dTmax−dT ) ·Rth0, (17)
such that its value decreases significantly as temperature gets
close to the upper limit, thus dissipating more energy to
prevent the temperature from building up further. Similar to
the memristor examples, the clipping effect of Rth also has
physical justifications, as in real devices, the power dissipation



of materials is often nonlinear so that the temperature is unlikely
to grow too high.

In conclusion of the discussion on the HBT model, the
methodology we study in this paper not only helps design models
with the desired hyteretic behaviours, but also helps explain the
origin of the multistability found in existing device models, and
guide us in modifying the model characteristics.

VI. Stoner-Wohlfarth Model for Ferromagnets
Another place where hysteresis is often observed is in magnetic

materials and devices. Modelling magnetic hysteresis is not only
important for simulating circuits with magnetic components, such
as iron cores in transformers, but also useful in analyzing and
understanding the underlying physics. The Stoner-Wohlfarth
(SW) model [23] is a classic, widely-used model for the
magnetization in single-domain ferromagnets. The core of SW
model is the formulation of an energy with respect to the angle
of magnetization:

E(h,ϕ) =
1
4
− 1

4
cos(2(ϕ −θ))−hcos(ϕ), (18)

where ϕ describes the direction of the internal magnetization
M, i.e., M = cos(ϕ); h is the strength of the external magnetic
field; θ is a fixed angle between the easy axis of the magnet
and the axis of h. The energy landscapes E(h,ϕ) with θ = π/4
and different h values are plotted in Figure 14.2 When there is
no external magnetization field, i.e., h = 0, the energy landscape
corresponds to the sinusoidal curve in the middle of the plot.
According to this curve, there is a steady-state solution in ϕ that
locally minimizes the energy function after every π distance.
These solutions correspond to two stable values for M. When h
increases or decreases beyond certain thresholds, one of the two
steady states in M vanishes. As visualized in Figure 14, when h
is swept back and forth, ϕ jumps from valley to valley in the
energy landscape, generating hysteresis in M.
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Fig. 14: Energy landscapes of SW model with different external magnetic field h.

The SW model is known to have problems in simulation [35].
Since the model is based on the magnetization angle, any solution
shifted by 2kπ is also a solution. The problem is exacerbated
by the fact that ϕ grows monotonically when h is swept, as
illustrated in Figure 14, resulting in unbounded ϕ in simulation.

The magnetic hysteresis from the SW model can also be
analyzed through calculating the steady state solutions using the
homotopy algorithm. The homotopy results, plotted in Figure 15,
are different from other examples we have studied in this paper.
There is no single DC curve. Instead, there are infinite number
of separated ones, and as h is swept, the DC solution in ϕ

jumps up from one to another. Evidently, the lack of a single
DC solution curve is connected with the unbounded ϕ problem
in the SW model.

2Offsets are added to the plots to separate them from each other vertically.
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Fig. 15: The steady state solutions of in the SW model from homotopy analysis and
magnetic hysteresis from transient h sweeping.
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Fig. 16: Energy landscapes of the modified SW model.

From our observation, the reason ϕ becomes unbounded is
that under the perturbation of h, it is always moving to the right
when θ > 0, while in fact, it is equivalent if we flip both input
h and state ϕ around θ to make ϕ jump to the left instead.
If the flipping is done for only h < 0, ϕ’s movement should
be contained,3 as illustrated in Figure 17. The partially flipped
version of the energy landscape in this modified model is as
follows.

Ê(h, ϕ̂) =
1
4
− 1

4
cos(2(ϕ̂ −θ))

−hcos(ϕ̂ −2θ · smoothstep(−h)),
(19)

where ϕ̂ is the new variable for simulation, and is related to the
original ϕ through

ϕ = ϕ̂ −2θ · smoothstep(−h). (20)

The modified SW model is implemented as a DAE object
in MAPP [21] in Listing 7. It can also be written with
MAPP’s multiphysics modules [36], or with Verilog-A’s magnetic
discipline [5]. The modified model still has an energy landscape
smoothly varying with input h but is better numerically, in
the sense that ϕ̂ does not grow without bound in simulation.
This improvement corresponds to a reshaped DC curve for the
model. In Figure 17, we plot all the steady state solutions within
−1 ≤ h ≤ 1. The DC solutions in the improved model indeed
form a single curve with a similar shape as the other examples

3In this case, any other solution shifted by 2kπ is still a solution, but this can
be easily fixed by adding clipping terms beyond one cycle to eliminate other
solutions.
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Fig. 17: Homotopy results of the steady state solutions in the modified SW model.



in the previous sections; the multistability indeed comes from
the fold in the continuous DC curve in the state space. The
reconstructed ϕ corresponding to this curve is plotted in Figure 17
(b). The solutions in ϕ still form a single continuous curve,
due to the smooth function used in (20). The cos values of ϕ ,
corresponding to magnetization M, form the same M–h hysteresis
loop as shown in Figure 15 (b).

1 function DAE = SWmagnet_DAE()
2 DAE = init_DAE();
3 DAE = add_to_DAE(DAE, ’name’, ...
4 ’Stoner-Wohlfarth model for ferromagnets’);
5 DAE = add_to_DAE(DAE, ’unkname(s)’, {’phihat’});
6 DAE = add_to_DAE(DAE, ’eqnname(s)’, {’phihatdot’});
7 DAE = add_to_DAE(DAE, ’inputname(s)’, {’h’});
8 DAE = add_to_DAE(DAE, ’parm(s)’, {’theta’, pi/4, ...
9 ’tau’, 1e-6, ...

10 ’maxslope’, 1e15, ...
11 ’Kclip’, 10, ...
12 ’smoothing’, 1e-5});
13 DAE = add_to_DAE(DAE, ’f’, @f);
14 DAE = add_to_DAE(DAE, ’q’, @q);
15 DAE = finish_DAE(DAE);
16 end
17

18 function fout = f(S)
19 v2struct(S);
20 phihatdot = 0.5 * sin(2 * (phihat - theta)) + ...
21 h * sin(phihat - smoothstep(h, smoothing)*2*theta);
22 clip_0 = safeexp(Kclip*(-phihat), maxslope) ...
23 * smoothstep(-phihat, smoothing);
24 clip_3pi = -safeexp(Kclip*(phihat-3*pi), maxslope) ...
25 * smoothstep(phihat-3*pi, smoothing);
26 fout = phihatdot + clip_0 + clip_3pi;
27 end
28

29 function qout = q(S)
30 qout = [S.tau * S.phihat];
31 end

Listing 7: SWmagnet_DAE.m

We would like to note that the modified SW model is only
equivalent to the original one in DC responses; during transient
simulations, ϕ̂ from (19) and ϕ from (18) won’t correspond to
each other exactly. But since the original SW model is itself a
steady state model for magnetization, the modified one with the
proposed flipping mechanism is equally useful in the analysis
of magnetic hysteresis.

VII. Summary
In this paper, we have developed a generic formalism for

hysteretic devices. We have shown how abrupt changes in
device characteristics can result from entirely smooth model
equations, and how to model these properties correctly by
designing a fold in the model’s steady state solution curve.
With this understanding, we have been able to design, analyze,
and improve upon several models for various devices, including
ESD clamps, RRAMs/memristors, HBTs, and the SW model for
ferromagnets. The result is not only a class of compact models
that work robustly in simulation, but also a further understanding
of the multistability and hysteresis in devices.
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