
1

Multiphysics Modelling and Simulation in Berkeley MAPP
Tianshi Wang‡ and Jaijeet Roychowdhury

Department of Electrical Engineering and Computer Science, University of California, Berkeley
‡Contact author. Email: tianshi@berkeley.edu

Abstract—We introduce the newly-developed modules for multiphysics
modelling and simulation in Berkeley Model and Algorithm Prototyping
Platform (MAPP). Using them, developers can write compact models
for not only electronic devices, but also those from optoelectronics,
spintronics, microelectromechanical systems (MEMS), etc. They can also
connect these device models into systems using multiphysics netlists and
run various simulation algorithms on them. In this paper, we explain
the key concepts and techniques behind these modules, and illustrate the
usage of them through examples. Our plan is to make them available in
open-source form as part of MAPP under the GNU Public License.

I. Introduction
For decades, the development of analog electronic circuit simu-

lators has been playing a crucial role in the advancement of nano-
electronic technology. The introduction of Berkeley SPICE [1], [2],
as well as the accurate transistor models developed based on it, e.g.,
BSIM [3], provided designers with enabling tools for implementing
large-scale integrated circuits. Ever since then, progress in electronic
device modelling and simulation techniques has served as one of the
key driving forces behind Moore’s law.

In recent years, as Moore’s law becomes increasingly threatened by
the fundamental design and manufacturing limitations of electronic
devices, there has been a growing research interest in multiphysics
devices and systems [4], e.g., from optoelectronics, spintronics,
MEMS, etc. Similar to nanoelectronics, the development in these
fields calls for accurate device compact models as well as convenient
prototyping and simulation at the system level, highlighting the
need for a powerful, flexible, yet easy-to-use multiphysics simulation
platform.

However, standard electronic simulators available today are not
suitable for multiphysics. SPICE and its derivatives, e.g., ngspice [5],
were designed from the ground up for electronics. Specifically, the
circuit equations are constructed in each device through “stamping”,
based on hard-coded Modified Nodal Analysis (MNA) [6] and current
right-hand-side (RHS) formulation [7]. While modern open-source
post-SPICE circuit simulators, e.g., Gnucap [8], Qucs [9] and Xyce
[10], have many advantages over SPICE and its derivatives, they carry
with them the same circuit modelling conventions such as MNA that
have made them unsuitable for multiphysics.

As a result, much research effort has been devoted to adapting
open-source SPICE-like simulators to support non-electronic systems,
for MEMS [11], chemical reactions [12], neural systems [13], river
networks [14], etc. These techniques essentially implement “wrap-
pers” around electronic simulators for other physical domains, and
only support the domain for which they are designed. Similarly,
for commercial simulators, Verilog-A provides an industry standard
“wrapper” for modelling non-electronic systems. However, although
Verilog-A models can be written with variables from different “na-
tures” and disciplines [15], these variables have to be either potentials
or flows, corresponding to voltages and currents in the underlying
circuit formulation in simulators, which still internally use hard-coded
MNA and circuit laws (KCLs/KVLs). For systems that don’t obey
circuit laws, e.g., optoelectronic [16] and spintronic [17] systems,
models are often not intuitive to write and require cumbersome
connections in netlists.

In this paper, we outline our implementation of multiphysics
simulation in Berkeley MAPP [18], [19]. MAPP is a MATLAB R©-

based open-source simulation framework whose internal code struc-
ture differs markedly from that of SPICE-like simulators. At the
core of MAPP is the concept of Differential Algebraic Equations
(DAEs), which represent not only electronic circuits, but also general
dynamic systems [6]. Device models are also DAEs, specified using
the ModSpec format [20]; they describe the relations between un-
knowns using equations and are thus not limited to electronics either.
Device connectivities are specified using MATLAB R©-structure-based
netlists. A component unique to MAPP, namely equation engine,
processes netlists and device ModSpec models to construct the system
DAEs. As a result, MNA is implemented as only one of the equation
engines. Sparse Tableu [6] analysis can be applied by swapping just
the equation engine while keeping devices and netlists unchanged
[21]. Moreover, domain-specific equation engines, such as optical
and chemical ones, have also been demonstrated [19]. It has been
speculated [19] that such code structure of MAPP could also facilitate
the implementation of a general multiphysics equation engine for
systems with multiple physical domains. Recently, we have been able
to demonstrate such an equation engine in MAPP. In the process, we
have also extended MAPP’s devices and netlists in a modular way
for multiphysics. We describe our implementations in more detail in
Sec. II.

MAPP’s multiphysics modelling and simulation capabilities are
considerably more general and flexible than those of Verilog-A.
Specifically, systems unknowns do not have to be potentials or
flows. Through the use of Network Interface Layers (NILs) [20]
in ModSpec, we allow users to define physical quantities that are
suitable and intuitive in their underlying physical domains, especially
where circuit laws are not applicable. By writing NIL interfaces for
a master equation engine, users can also define system connections,
i.e., they specify the multiphysics equivalents of circuit laws by
controlling how DAEs are constructed. These interfaces can be easily
written by implementing a few API functions that specify how to
link NIL quantities to system-level DAE unknowns and equations;
they are not limited to using only MNA. Moreover, we leverage
MATLAB R©’s support for complex numbers and vectors in MAPP,
simplifying system connections significantly compared with Verilog-
A implementations [16], [17]. Some examples of multiphysics sys-
tems prototyped in MAPP are provided in Sec. III.

II. Multiphysics Modelling and Simulation in MAPP
Devices in MAPP are modelled based on the mathematical concept

of DAEs [20], which describe general equations and unknowns;
they do not carry physical meanings such as voltages/currents or
KCLs/KVLs by themselves. But as discussed in Sec. I, for equation
engines to construct part of the system-level DAEs based on network
connectivities, they require the physical meanings of device I/Os and
definitions of node connections. This information is provided by a
structure attached to the core model equations, namely a Network
Interface Layer [20]. Recently, we have extended ModSpec to be
able to include an array of NILs for encoding I/O information from
multiple physical domains within a single device model.

As an example, Fig. 1 illustrates a thermistor model, where the
core model specifies equations using variables vpn, ipn, temp t
and pwr t. Two NILs, eeNIL and thermalNIL, are attached to

2

ModSpec Core

Equations:

I/Os: ,
 ,

eeNIL

thermalNIL

I/O name I/O type I/O nodes

current

voltage

I/O name I/O type I/O nodes

power flow

temperature

Fig. 1: Thermistor model with both electrical and thermal nodes. eeNIL and thermalNIL
associate the I/Os in the ModSpec equations with their physical meanings.

this model to inform the equation engines of the physical meanings
of these variables — branch voltage, current, temperature and power
flow.

+

− +

−

R1V1
Rth

Vamb
Cth

(a) (b)

Fig. 2: Multiphysics circuit with a thermistor and its transient simulation results

Such a model can be connected to a system such as the one in
Fig. 2 by specifying a multiphysics netlist, e.g., Fig. 3, completely
using the MATLAB R©language.

Fig. 3: Code for constructing a multiphysics netlist for system in Fig. 2.

To support these multiphysics devices and netlists in MAPP, the
key technique, as illustrated in Fig. 4, is to separate the components
that are dependent on physical domains from those that are not.
Specifically, we design a master equation engine to handle all the
structures not associated with physical domains, e.g., parameters,
all the non-I/O unknowns, implicit equations, etc. Then it uses
components named NIL interfaces to handle the domain-specific parts
of the devices, i.e., the I/Os. More specifically, NIL interfaces set
up the relations between device’s I/Os and system-level unknowns.
Each NIL interface is an add-on component to the master equation
engine, designed to handle the NIL in one physical domain. In this
way, MAPP can be conveniently extended to support new physical
disciplines, simply by adding new types of NILs at the device
level, and the corresponding NIL interfaces for the master equation
engine, without changing the device’s ModSpec format or simulation
algorithms.

eeNIL

ModSpec model

Master Equation Engine

opticalNIL

thermalNIL

N
e

tl
is

t

eeNIL

opticalNIL

thermalNIL

ModSpec model
eeNIL_interface

opticalNIL_interface

thermalNIL_interface

Fig. 4: MAPP uses a master equation engine with multiple NIL interfaces to construct
system-level DAEs from device models and netlist structure.

III. Examples

With the help of the master equation engine and NIL interfaces,
MAPP now supports all the “natures” defined in Verilog-A’s stan-
dard disciplines.vams file, including disciplines labelled as
electrical, magnetic, thermal, kinematic, etc. All these disciplines are
modelled with potentials and flows.

MAPP also supports multiphysics systems beyond this poten-
tial/flow formulation. Table 1 summarizes MAPP’s formulations for
some selected physical domains. Among them, optical connections
are modelled with incoming/outgoing waves, which can be thought of
as time-varying phasors capturing the modulated envelopes of light.
Variables at each optical ports consist of vectors of complex numbers
representing these phasors at all simulation frequencies. There is
no direct circuit analogy to this formulation. In chemical reaction
networks, each node represents the concentration of a reactant. “KCL”
at a node involves both the summation of reaction rates and a
differential term for the node concentration. Using our infrastructure,
such “differential-KCLs” can be defined in MAPP conveniently. To
illustrate the simulation capabilities of MAPP on these multiphysics
systems, we run DC and transient analyses on a spin valve and a
chemical oscillator in MAPP, and show the results in Fig. 5 and Fig.
6 respectively.

domain NILs I/Os network connectivity

optical NIL
incoming/outgoing
waves (vector of
complex numbers)

two optical ports are connected at
each node, the incoming waves on
one side are equal to the outgoing
waves on the other, and vice-versa.

spin NIL
spin voltages and
currents (size-3
vectors)

spin “KCLs” and “KVLs” in vector
form

chemical NIL
concentrations (C)
and reaction rates
(R) (scalars)

node connections represent con-
centrations of reactants; the sum of
reaction rates at a node is equal to
the change in corresponding con-
centration, i.e.,

∑
R = − d

dt
C.

Table 1: NIL descriptions of some selected physical domains supported in MAPP.

+

−

NM-FM

FM-NM

Fig. 5: DC sweep on a spin valve system in MAPP. The network contains both electrical
and spintronic connections (blue wires). Device diagram is adapted from [17].

[A]

[B] [C]

[in1]
[out]

[in2]

Fig. 6: Diagrams of a 2-to-1 chemical reaction, a network containing three of such
reactions. Transient simulations with different initial concentrations (plotted in 3-D) show
that the reaction network constitutes a chemical oscillator.

Acknowledgments

Support for the development of multiphysics simulation in MAPP
has been provided by the NSF- and SRC-sponsored NEEDS (Nano-
Engineered Electronic Device Simulation Node) project.

3

REFERENCES

[1] L.W. Nagel. SPICE2: a computer program to simulate semiconduc-
tor circuits. PhD thesis, EECS department, University of California,
Berkeley, Electronics Research Laboratory, 1975. Memorandum no.
ERL-M520.

[2] D. O. Pederson and A. Sangiovanni-Vincentelli. SPICE 3 Version
3F5 User’s Manual. Dept. EECS, Univ. California, Berkeley, CA,
1994.

[3] B. Sheu, D. Scharfetter, P.-K. Ko, and M.-C. Jeng. Bsim: Berkeley
short-channel igfet model for mos transistors. Solid-State Circuits,
IEEE Journal of, 22(4):558–566, 1987.

[4] Semiconductor Industry Association et al. ITRS: International
Technology Roadmap for Semiconductors, 2015.

[5] P. Nenzi and H. Vogt. Ngspice Users Manual Version 26 (Describes
ngspice-26 release version). 2014.

[6] J. Roychowdhury. Numerical simulation and modelling of electronic
and biochemical systems. Foundations and Trends in Electronic
Design Automation, 3(2-3):97–303, December 2009.

[7] A. Vladimirescu. The SPICE book. John Wiley & Sons, Inc., 1994.
[8] A. Davis. The gnu circuit analysis package. 2006.

http://www.gnu.org/software/gnucap.
[9] M. E. Brinson and S. Jahn. Qucs: A GPL software package for

circuit simulation, compact device modelling and circuit macro-
modelling from DC to RF and beyond. International Journal of
Numerical Modelling: Electronic Networks, Devices and Fields,
22(4):297–319, 2009.

[10] E. R. Keiter, T. Mei, T. V. Russo, R. L. Schiek, H. K. Thornquist,
J. C. Verley, D. A. Fixel, T. S. Coffey, R. P. Pawlowski, C. E.
Warrender, et al. Xyce parallel electronic simulator users’ guide,
Version 6.0. 1. Technical report, Raytheon, Albuquerque, NM; San-
dia National Laboratories (SNL-NM), Albuquerque, NM (United
States), 2014.

[11] E. Zhu. SUGAR 3.0: A MEMS Simulation Program (Users Guide).
2002.

[12] J. Wyatt, D. Mikulecky, and J. DeSimone. Network modelling
of reaction-diffusion systems and their numerical solution using
SPICE. Chemical Engineering Science, 35(10):2115–2127, 1980.

[13] R. Schiek, C. Warrender, C. Teeter, J. Aimone, H. Thornquist,
T. Mei, and A. Duda. Simulating Neural Systems with Xyce. No.
SAND2012-10628. Sandia National Laboratories, 2012.

[14] F. Liu and B. Hodges. Dynamic river network simulation at large
scale. In Proceedings of the 49th Annual Design Automation
Conference, pages 723–728. ACM, 2012.

[15] Accellera. Verilog-AMS Language Reference Manual, version 2.4,
2014.

[16] E. Kononov. Modeling photonic links in Verilog-A. PhD thesis,
Massachusetts Institute of Technology, 2013.

[17] K. Camsari, S. Ganguly, and S. Datta. Modular approach to
spintronics. Scientific reports, 5, 2015.

[18] MAPP: The Berkeley Model and Algorithm Prototyping Platform.
http://mapp.eecs.berkeley.edu.

[19] T. Wang, K. Aadithya, B. Wu, J. Yao, and J. Roychowdhury. MAPP:
The Berkeley Model and Algorithm Prototyping Platform. In Proc.
IEEE CICC, 28-30 Sept. 2015.

[20] D. Amsallem and J. Roychowdhury. ModSpec: An open, flexible
specification framework for multi-domain device modelling. In
Computer-Aided Design (ICCAD), 2011 IEEE/ACM International
Conference on, pages 367–374. IEEE, 2011.

[21] T. Wang, K. Aadithya, B. Wu, and J. Roychowdhury. MAPP: A
platform for prototyping algorithms and models quickly and easily.
In 2015 IEEE MTT-S International Conference on Numerical Elec-
tromagnetic and Multiphysics Modeling and Optimization (NEMO),
pages 1–3. IEEE, 2015.

