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Injection locking is a phenomenon by which an oscillator

locks to a small external oscillatory input signal in both fre-

quency and phase. It has many applications, including the de-

sign of high-performance quadrature oscillators [1], injection-

locked PLLs [2], frequency dividers [3], optical lasers [4], etc.

Recently, it has also been used as the central mechanism in

oscillator-based general-purpose computing systems [5], [6].

In many of these applications, the speed in which the

oscillator’s phase locks on to the external signal is of interest

to designers. For example, in oscillator-based computing, this

speed directly determines how fast bits can flip, a key property

in computing. A recent prototype of such computing systems

[7] uses CMOS rings oscillators, but the scheme can be

generalized to use high-Q LC-type oscillators for better energy

efficiency.

Intuitively, high-Q oscillators are slower in response. Which

is to say that its amplititude is often more stable and settles

more slowly to its steady state. But is it also true for its phase?

With a periodic injection, will a high-Q oscillator’s phase shift

more slowly to its injection-locked state than one with a lower-

Q?

To answer this question, we first define the Q factor of

oscillators. Then we simulate a simple negative-resistance LC

oscillator with an adjustable Q factor and present the results.

I. What’s a High-Q Oscillator?

When we refer to an oscillator as having a high Q factor,

what we are often trying to say is that it has a stable frequency

and amplitude. These properties often translate to better energy

efficiency and lower phase noise, so the “quality” Q is higher.

However, once we try to write down an exact formula for the

Q factor of an oscillator, several confusions arise.

Firstly, Q factor is often defined under the context of (usu-

ally second-order) linear resonators, which are systems with

damped oscillatory behaviours. There are several definitions.

One is the frequency-to-bandwidth ratio of the resonator:

Q
def
=

fr
∆f

=
ωr

∆ω
. (1)

The formula implies that there is a Bode plot of the system

with a resonance frequency, thus is only meaningful for stable

linear systems with well-defined inputs and outputs. It is

not directly applicable to oscillators which are by-definition

autonomous and usually nonlinear. Another definition for Q

factor is from the energy perspective:

Q
def
= 2π ×

Energy Stored

Energy Dissipated per Cycle
. (2)

This assumes that there is damping in the oscillation, which

is not true for self-sustaining oscillators. There are other

definitions that directly map Q to a parameter in the transfer

function, but they are limited to linear resonators as well.

Another common confusion is that people often simply

assume an oscillator to have the same Q factor as the resonator

it is using inside. For example, an LC-type oscillator is often

said to have the same Q as the RLC circuit in it. However,

this is not true either. An obvious conterexample is that the use

of a high-Q resonator in a nonlinear oscillator doesn’t always

result in a high-Q oscillator.

Therefore, in this paper abstract, we first have to define the

Q factor of an oscillator. We define it also from the energy

perspective. Consider perturbing an amplitude-stable oscillator

with a small amount of extra energy. The oscillator will settle

back to its amplitude-stable oscillatory state, dissipating (or

restoring) some small amount of energy every cycle. Then

we define the ratio between the extra energy applied and the

energy dissipated (or restored) every cycle as the Q factor of

the oscillator:

Q
def
= 2π ×

Extra Energy Applied

Extra Energy Dissipated per Cycle
. (3)

Fig. 1: Illustration of the definition of Q factor for nonlinear oscillators.

The definition is illustrated in Fig. 1. It is analogous to

that of the linear resonator, except that instead of zero state,

now the oscillator settles to it’s amplitude-stable state. The

higher the Q factor, the more slowly it’s amplitude responds

to perturbations, which fits intuition.

Note that because the oscillator is nonlinear, when we are

measuring the Q in the way shown in Fig. 1, the size of the

extra amplitude introduced will affect the measurement. But



Fig. 2: Simulation results of amplitude (a1-3) and phase shifting (b1-3) of high-Q and low-Q oscillators. In (b3), we plot the zero-crossing differences
between the v signals and injection signals in (b1) and (b2).

as the extra amplitude gets smaller and smaller, the Q factor

defined in (3) should converge. We can then define the Q factor

using this limit. The limit can be analyzed using techniques

developed for Linear Period Time Varying (LPTV) systems.

It can be estimated both analytically and numerically given

the oscillator’s DAEs. Therefore, the Q factor in (3) not only

fits intuition, it is also a quantity that can be conveniently

characterized and analyzed.

II. Does It Take Longer to Injection Lock a
High-Q Oscillator?

By definition, a high-Q oscillator settles more slowly in

amplitude. But is it also true for its phase? To rephrase the

question: as Q factor becomes higher, does it also take longer

to injection lock the oscillator’s phase?

To study this question, we consider a simple negative-

resistance LC oscillator shown in Fig. 3. Different nonlineari-

ties in f(v) result in different Q factors. Intuitively, as f(v)+ 1

R

gets “flatter”, the oscillator will appear more like an LC tank

with no resistance, thus the Q gets higher.

Fig. 3: A simple negative-resistance LC oscillator. Different choice of f(v)
will result in different Q factor of the oscillator.

We simulate the LC oscillator with L = 0.5nH , C =
0.5nF , f(v) = K · (v− tanh(1.01 · v)). We choose K values

as 1 and 20, the former results in a high-Q oscillator, the latter

low-Q. The simulation results in Fig. 2 show that the high-Q

one settles much more slowly in amplitude. Then we apply a

small injection current I(t) = 1mA · cos(ω0t + π/2 ∗ u(t −
100ns)) at the only non-ground node of the circuit, where

ω0 = 1√
LC

, u(t) is the step function. In this way the injection

signal shifts its phase to 90◦ after 100ns. The oscillator’s

phase will follow this change by shifting gradually through the

mechanism of injection locking. The results in Fig. 2 indicate

that the difference in the phase shifting behaviour between the

high-Q and low-Q oscillators is marginal.

Therefore, at least in this simple LC oscillator experiment,

the shifting speeds of amplitude and phase seem to be decou-

pled. This result is intriguing as the speed in the phase shift

doesn’t seem to be sacrificed as we use more energy efficient

oscillators. This property is very appealing in many injection-

locking-related applications.

In our further research, we will investigate the question in

more detail, including simulations on other types of oscillators,

other potential trade-offs as we use energy efficient high-Q

oscillators, possible numerical issues with the injection locking

simulations, more rigorous analytical expression of oscillator’s

Q factor using LPTV theories, etc.
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