
Design Tools for Oscillator-based Computing Systems

Tianshi Wang‡ and Jaijeet Roychowdhury
∗Department of Electrical Engineering and Computer Science, The University of California, Berkeley, CA, USA

‡Contact author. Email: tianshi@berkeley.edu

ABSTRACT

Recently, general-purpose computing schemes have been proposed
that use phase relationships to represent Boolean logic levels and em-
ploy self-sustaining nonlinear oscillators as latches and registers. Such
phase-based systems have superior noise immunity relative to tradi-
tional level-encoded logic, hence are of interest for next-generation
computing using nanodevices. However, the design of such systems
poses special challenges for existing tools. We present a suite of tech-
niques and tools that provide designers with efficient simulation and
convenient visualization facilities at all stages of phase logic system
design. We demonstrate our tools through a case study of the design
of a phase logic finite state machine (FSM). We build this FSM and
validate our design tools and processes against measurements. Our
plan is to release our tools to the community in open source form.

1. INTRODUCTION

For decades, Moore’s law [13] has been the driving force behind the
growth of the semiconductor industry and the rapid progress of com-
puting power. However, serious design and manufacturing roadblocks
are starting to slow down this trend [22]. For example, noise and
variability are having an ever-greater impact on system performance
as transistors are further miniaturized; power consumption has also
been of serious concern for many years. With such obstacles imped-
ing progress in computing, there has been a search for alternative
computing paradigms.

One broad direction being explored is alternatives to conventional
planar silicon CMOS transistors, e.g., new device structures such as
multigate transistors [10], new materials including graphene [14] and
carbon nanotubes [16], and new devices in alternative domains such
as optics and spintronics [2, 3]. In another direction, novel system-
level designs are being explored to alleviate power consumption con-
cerns, e.g., improved micro-architectures, advanced power manage-
ment, multi-core chip designs with multi-threaded software [8], etc.
Most explorations of alternatives have concentrated on the device and
architectural levels.

Another direction, alternative low-level physical representations of
abstract logic, has also attracted attention recently. In conventional
computing systems, binary logic is typically encoded as two sta-
ble voltage levels; CMOS technology provides an excellent substrate
for such level-based computation. However, an alternative low-level
mechanism for encoding logic, using relative phase differences from a
reference signal (REF), has been shown to hold considerable promise.

The notion of phase-encoded computing dates back to decades ago.
In the 1950s, Eiichi Goto and John von Neumann proposed schemes
for implementing computation with phase logic as alternatives to the
vacuum tube technology then used in computers [19, 21, 9]. They de-
vised resonant circuits, driven by AC power sources, that oscillated at
integer sub-multiples of the AC driving frequency and featured mul-
tiple stable phase states, which they used for logic encoding. Goto’s
resonant circuit was termed the Parametron; in 1958, he used it to
build the PC-1, a computer based on the Parametron. Comput-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
DAC ’15, June 07 - 11, 2015, San Francisco, California, USA.
Copyright 2015 ACM 0-12345-67-8/90/01 ...$15.00.
DOI: http://dx.doi.org/10.1145/2744769.2744818

ers based on Parametrons were once popular in Japan but quickly
gave way to transistor-based computers with level-based logic encod-
ing. Later versions of Goto’s Parametron employed superconducting
Josephson junctions to improve speed and energy consumption; how-
ever, they still remained unsuitable for large-scale integration and
have been limited in application.

Recently, the phase logic idea has been revisited with new mecha-
nisms and schemes proposed in [18, 15]. The new phase logic frame-
work is termed PHLOGON: PHase-based LOGic using Oscillatory
Nano-systems. Instead of passive resonant circuits driven by AC
power, PHLOGON uses DC-powered self-sustaining nonlinear oscilla-
tors as phase logic components. When perturbed with a synchroniza-
tion signal (SYNC) that oscillates at integer multiples of its natural
frequency, such oscillators feature Sub-Harmonic Injection Locking
(SHIL), a phenomenon via which the oscillator’s phase can lock to
SYNC’s in multiple ways. These multiple sub-harmonic phase locks
can then be used to encode logic bits. With SHIL as the central
mechanism, a broad choice of nonlinear oscillators become potential
candidates for implementing PHLOGON systems, including many
that can be integrated and consume very little power. Moreover,
phase encoding offers better noise immunity compared with level-
based encoding [18, 15]. With noise and power acting as today’s
central barriers impeding the progress of computing, these features
of PHLOGON have made it an interesting and promising alternative
to conventional level-based logic computation.

However, the design of PHLOGON systems poses new challenges to
existing tools. PHLOGON systems use nonlinear oscillators as under-
lying logic components. The simulation of even a single oscillator is
often non-trivial, to say nothing of many of them connected together
for logical computation. In particular, standard SPICE transient sim-
ulation is often not well suited for capturing oscillator phases, central
to phase-based logic encoding, accurately and efficiently. These chal-
lenges are detailed in Section 2; no existing tools with emphasis on
phase-based computation are conveniently available to designers.

In this paper, we present a set of design tools that can overcome
these difficulties. The tools use phase-macromodel-based techniques
(detailed in Section 2) that enable direct simulation and visualization
of the phases of oscillatory signals in a PHLOGON system. In par-
ticular, the tools can predict whether SHIL will happen, and when
it does, estimate the locking range and locking phase error — key
properties to assess the latch’s ability to store a bit. They also pro-
vide convenient simulation and visualization of the logic bit’s flipping
behaviour under the control of logic inputs. These features are of
key importance during the design of oscillator latches; our tools have
made their characterization convenient. Once individual oscillator
latches have been designed, the tools perform full system simulation
using phase macromodels for efficiency and improved visualization.

We demonstrate the capabilities of our tools by using them to design
example ring-oscillator-based latches and a “proof-of-concept” FSM,
showing how the tools are useful at every stage in the design of a
PHLOGON system. Using the design tools, we have built a phase
logic FSM on breadboards and verified its logical operation through
oscilloscope measurements. This state machine, to our knowledge,
is the first one built with DC-powered oscillators and phase-based
logic encoding. Without the design tools, designing, building and
debugging even this simple state machine would have been much more
difficult, perhaps impossible.

The rest of this paper is organized as follows. In Section 2, we detail
the challenges posed by the design of PHLOGON systems, and the
contributions of our design tools in overcoming these difficulties. In

Section 3, we provide background on oscillator PPVs and the Adler
equation, concepts central to our tools. Then, in Section 4, we present
our tools and demonstrate their use for the design of a ring-oscillator-
based phase logic computation system, illustrating their mechanisms
and capabilities along the way. Using insights and results from the
design tools, we have built a ring-oscillator-based PHLOGON state
machine; in Section 5, we validate the accuracy and efficiency of the
design tools against both standard transient simulations and mea-
surements of actual circuit implementations.

2. PHLOGON DESIGN CHALLENGES AND OUR CONTRI-

BUTIONS

The general design flow of a PHLOGON system is shown in Fig.
1. Designers start from a self-sustaining nonlinear oscillator, attach
SYNC and logic control inputs to make it a phase logic latch, then
construct state machines with latches and logic gates 1. The effective
and efficient design of such a system requires simulation tools that
can conveniently assist designers in the following design stages:

0

1800

Figure 1: Design flow of PHLOGON systems and design tools required. Tools
in red bold fonts are ones currently not conveniently available to designers.

1. Attaching SYNC for bit storage: simulation should be able to
predict whether SHIL will occur given a design. It should estimate
the locking range with respect to system parameters and inputs.

2. Attaching logic inputs for bit flip: simulation should be able to
capture the transient behaviour of phases shifting from one locked
state to another. This is central to the timing analysis of phase-
based logic latches.

3. Full system simulation for PHLOGON: efficient simulation that
directly captures phase transitions is needed to simulate the logic
operation as well as timing of the final system.

At these design stages, standard SPICE-level transient simulation
is not suitable due to accuracy and efficiency reasons [5, 20]. Os-
cillators feature phase stability, causing numerical errors in phase
to accumulate without bound. This renders the SPICE-level tran-
sient simulation results meaningless for systems that operate based
on phase logic. For acceptable accuracy, tiny time steps are needed in
each oscillation cycle, making computation very expensive for PHL-
OGON systems, where thousands of cycles are often simulated for
phase transitions to perform logic operation. Also, the occurrence of
IL/SHIL is often hard to estimate by eye from SPICE-level transient
results. Apart from all these, even if such a long transient simula-
tion is performed accurately, it doesn’t provide much insight into the
improvements of the system, so the design will be largely based on
trial-and-error. Therefore, as shown in Fig. 1, more efficient and
convenient tools that can directly address the needs of PHLOGON
designers are highly desired.

In comparison, our design tools implement techniques based on Per-
turbation Projection Vector (PPV) macromodels [6, 7, 23, 17] and
the Generalized Adler’s Equation (GAE) [4]. They provide designers

1
Majority and Not operations constitute a logically complete set [18] and they

are used in PHLOGON to build combinational logic blocks.

with all the capabilities shown in Fig. 1, including many that are not
currently conveniently available.

1. For bit storage in latches: the design tools can automatically ex-
tract PPV macromodels from an oscillator using both time-domain
[7, 23] and frequency-domain [17] methods, derive the GAE from
the PPV and calculate its equilibrium state to provide convenient
visualization of locking range when sweeping system parameters.

2. For bit flip in latches: with the presence of logic control inputs,
through the calculation of the GAE’s equilibrium state, the design
tools can directly return the phase error of a locked state with
respect to a reference phase. This can be used to visualize a latch’s
logic function, i.e., verify its truth table with logic inputs. Also,
the transient solutions of GAE macromodel are also available with
the design tools to visualize the bit flip transient behaviour directly
in phase domain.

3. Full system transient simulation with phase macromodels: after
constructing PPV macromodels, the design tools can directly sim-
ulate the transient behaviour of the phases of the oscillators in a
PHLOGON system. The results can be used not only to reproduce
SPICE-level transient results more efficiently, but also to provide
visualization of the system’s logic operation in the phase domain.

The techniques used in the design tools, although the theory of them
has been established ([6, 7, 23, 17, 4]), do not have open-source or
commercial implementations conveniently available to designers, nor
have they ever been applied to the design and analysis of phase logic
computation systems before. Our design tools implement the simu-
lation techniques, and also include visualization modules associated
with them that are specially designed for phase logic operations. We
expect to release the simulation and visualization tools as well as
examples of PHLOGON systems implemented using them freely as
open-source software to facilitate the exploration of phase-based logic
computation.

3. PPV MACROMODEL AND GAE

A nonlinear self-sustaining oscillator under perturbation can be de-
scribed mathematically as a set of Differential Algebraic Equations
(DAEs):

d

dt
~q(~x) + ~f(~x) +~b(t) = ~0 (1)

where ~x ∈ R
n are the unknowns in the system, ~b(t) is a small time-

varying input. The oscillator’s response can be approximated well
as

~x(t) = ~xs(t+ α(t)) (2)

where xs(t) is the oscillator’s steady state response without pertur-

bation (~b(t) ≡ ~0); α(t) is the phase shift caused by the external input
and is governed by the following differential equation:

d

dt
α(t) = ~vT (t+ α(t)) ·~b(t) (3)

where the vector ~v(t) is known as the Perturbation Projection Vector
(PPV) [6] of the oscillator. Assume the oscillator’s natural frequency
is f0 = 1/T0. Then ~v(t) is a T0-periodic vector that can be extracted
numerically from the DAEs of the oscillator without knowing any

information about the input ~b(t). Put in other words, it is a property
intrinsic to the oscillator that captures its phase response to small
external inputs.

PPV can be used to model and predict injection locking effectively
[11]. Based on it people have developed a simplified approximation of
(3) known as the Generalized Adler’s Equation (GAE) [4]. It governs

the dynamics of the oscillator’s phase with specific periodic inputs~b(t)
and its equilibrium states provide good approximations to injection-
locked solutions of (3). GAE has the following form:

d∆φ(t)

dt
= −(f1 − f0) + f0 · g(∆φ(t)) (4)

where ∆φ(t) = f0t+ f0α(t)− f1t is phase difference between the os-
cillator and the perturbation signal; f1 is the fundamental frequency

of periodic input ~b(t) and f1 ≈ f0; function g is derived from (3) and
can be evaluated numerically based on the formulation in [4].

When injection locking happens, the phase difference ∆φ(t) between
oscillator and injected signal becomes constant, i.e.

f1 − f0
f0

= g(∆φ∗) (5)

By plotting the LHS and RHS of (5) and looking for intersections,
designers can predict whether IL or SHIL will happen given a design
[1] without running long and expensive transient simulations.

4. DESIGN TOOLS FOR OSCILLATOR-BASED COMPUT-

ING SYSTEMS

As an overview, Fig. 2 illustrates the mechanisms and usage of our
design tools. All the operations shown in Fig. 2 are automatically
performed to guide the design of oscillator latches and the full PHL-
OGON system.

Figure 2: Overview of the mechanism of the design tools.

The key of the operation of the design tools is to transform the os-
cillator models to phase domain. Using phase macromodels, instead
of simulating oscillating voltages and currents in the system, we can
directly calculate the responses of phases.

In the rest of the section, we follow the design procedures of a ring
oscillator phase logic FSM example, and show how the simulation
and visualization provided by the design tools can be helpful in every
stage in the design.

4.1 Simulation of Bit Storage in Oscillator Latches

As described in Section 1, bit storage in an oscillator latch is achieved
through Sub-harmonic Injection Locking (SHIL). But what are the
conditions for SHIL to happen? How the adjustments on circuit struc-
tures affect SHIL’s locking range? And when SHIL happens, how to
predict the exact phase values of the locked states such that they can
be used as references in phase-based logic encoding?

These questions are hard to answer by trial-and-error approaches with
only the traditional SPICE-level transient simulation tools. In com-
parison, our design tools can automatically extract the ring oscilla-
tor’s PPV macromodel as in (3), perform Generalized Adlerization
and derive the oscillator’s GAE equilibrium formula shown in (5). By
plotting the LHS and RHS of (5), the solution of it, predicting the
occurrence of SHIL, can be easily visualized.

As illustration, we apply our tools on a ring oscillator example shown
in Fig. 3 and show how they can be used to answer these questions
from designers. To store a phase-based binary bit, we perturb the
ring oscillator with an external current source SYNC with ISYNC =
A · cos(2π · 2f1 · t), where f1 is close to its natural frequency f0.
In this oscillator, we choose C to be 4.7nF and assume that each
CMOS inverter consists of 1 ALD1106 NMOS and 1 ALD1107 PMOS
for the convenience of breadboard prototyping later on. In Fig. 5
we show the plot of the LHS and RHS of (5) at f1 = 9.6kHz with
various magnitudes A of SYNC produced by our design tools on this
oscillator. From Fig. 5 we can see that when A is larger than 70µA,
there are four intersections of LHS and RHS, two of them representing
stable DC solutions of (4) ([4]).

Although Fig. 5 provides a good visualization of the existence and
stability of the solutions of (5), it is not necessary to plot LHS and
RHS across the entire range of ∆φ in order to predict the occurrence
of SHIL numerically. Instead, after formulating GAE in our design
tools, DC operating point solving will be attempted with different
initial guesses. If no solution is found, the locking condition in (5) is
not satisfied with any ∆φ∗ and SHIL won’t happen; if a solution ∆φ∗

is found, the derivative of g(∆φ∗) is calculated. Based on Lyapunov’s

Figure 3: Diagram of a 3-stage ring
oscillator.

Figure 4: PSS reponse of the
free-running ring oscillator.

Figure 5: Graphical solutions of (5) in the ring oscillators with sinusoidal
SYNC of various magnitudes.

Stability Theorem [12] in the scalar case, if the derivative is negative,
the solution is stable and SHIL will happen. Such operation points
can be calculated in a DC sweep on parameters A and f1 to give de-
signers a more comprehensive idea of the locking range. Considering
that GAE is a scalar ODE, this method is robust and efficient.

Figure 6: PPVs extracted by the de-
sign tools from ring oscillator latches
with 2N1P and 1N1P inverters.

Figure 7: Locking range returned
by the design tools on ring oscillator
latches with 2N1P and 1N1P inverters.

Applying this DC-sweep-based method on the GAE of the ring os-
cillator, the locking range for SHIL can be visualized as in Fig. 7.
As a comparison, we perform the same analysis on another ring os-
cillator design with inverters made of 2 NMOS devices and 1 PMOS
(2N1P). We overlay their PPVs and locking ranges in Fig. 6 and
Fig. 7. The comparison reveals that after asymmetrizing the invert-
ers (changing to 2N1P), the second harmonic component of the PPV
becomes larger, resulting in a larger locking range for SHIL. Such
insight in design is difficult to get without facilities made available by
our tools based on PPV/GAE macromodels.

Apart from the locking range, in order to use the bi-stable phases to
encode logic bits in an oscillator latch, designers also need to know the
exact phase value of the oscillator’s response under SHIL, i.e., where
the peak of the oscillatory signal lies within a cycle. To analyze this
property, we first normalize the time axis in the oscillator latch’s
T0-periodic PSS response ~xs(t) and define a 1-periodic function:

~xs(1)(t) = ~xs(T0t) (6)

Assume that the peak of the output V (n1) is at position ∆φpeak in
this 1-periodic function, e.g., ∆φpeak ≈ 0.21 in Fig. 4. Then a cos
function shifted by ∆φpeak

Vpeak(t) = cos (2π · (t−∆φpeak)) (7)

will have peaks aligned with those in the 1-periodic PSS ~xs(1)(t).

When SHIL happens in the latch, assume the two stable solutions of
the GAE in equilibrium (5) are ∆φ0 and ∆φ1, separated by 0.5. To

represent 1 and 0 in phase-encoding, we define reference signals:

VREF(t) =
Vdd

2
+

Vdd

2
cos (2π(f1t−∆φpeak −∆φ0)) (8)

VREF(t) =
Vdd

2
+

Vdd

2
cos (2π(f1t−∆φpeak −∆φ1)) (9)

such that when SHIL happens in the latch, the peaks of the output
V (n1) will be bi-stably aligned with those of either VREF or VREF,
representing either phase-based 1 or 0.

Ideally, designers would like to operate the latch with f1 = f0 such
that the locking range is maximized (Fig. 7). However, when detun-
ing happens, i.e., f1 6= f0, even though the latch may still stay in lock
with a large enough SYNC, its locking phases ∆φ̂i may deviate from
references ∆φi, and their “quality” as logic bits may degenerate. For
this design spec, our tools offer a good visualization by calculating the
DC solutions of GAE and plotting the magnitudes of locking phase
errors |∆φ̂i −∆φi| across the locking range.

Figure 8: Locking phases errors |∆φ̂i−∆φi| within the locking range. 0 means
the signal under injection locking has the same phase as the reference.

The same procedures that calculate and plot GAE’s DC solutions can
be applied to any oscillator for the analysis of bit storage in phase logic
latches. With their help, designers are able to gain comprehensive
knowledge on the locking range, locking phases as well as the effects
of circuit structure and parameters on them.

4.2 Simulation of Bit Flip in Oscillator Latches

After attaching SYNC to the latch and defining phase-logic references
based on its SHIL properties, designers then attach logic inputs to
the latch to control the bit stored in it. But where to attach these
inputs? And given a certain topology, what are the appropriate input
magnitudes? Similar to the bit storage scenario, the visualization of
GAE solutions in our tools can be useful in determining these design
specs.

Figure 9: Diagram of a ring-oscillator D latch with phase-based D and level-
based EN.

As an example, Fig. 9 shows the diagram of a simple D latch where
EN is a level-based logic input that controls the on or off state of a
switch, D input is an oscillatory current source with a certain output
impedance:

ID(t) = −AD cos (2π(f1t−∆φpeak −∆φi)) , i = 0, 1 (10)

such that when EN = 1, i = 0, it enforces V (n1) to be aligned with
VREF; when EN = 1, i = 1, it enforces V (n1) to be aligned with VREF;
when EN = 0, no matter what ID’s phase is, V (n1) should hold on
to its original logic value. In this way, it achieves the functionality of
a D latch.

Assume that the switch is implemented using a transmission gate
made of ALD1106/7 long-channel MOSFET devices with a typical
on-resistance of 1kΩ and off-resistance of 100GΩ. The current source

is implemented with ALD1106 NMOS at the output stage with typ-
ical output impedance of 10MΩ. Under these conditions, what’s an
appropriate value for AD such that the logic bit in the latch can be
flipped by ID when EN=1, but retains its value when EN=0?

To answer this question, designers can again ask our tools to visu-
alize the solutions of GAE, but this time with both SYNC and D
as inputs. For example, Fig. 10 plots the LHS and RHS of GAE
equilibrium equation (5) with EN=1, SYNC=100µA and various AD

values. From it, we observe that when AD is larger than approxi-
mately 50µA, one of the stable phase states in SHIL vanishes and the
output’s phase is controlled by input D only.

Figure 10: Graphical solutions of (5) in the D latch with 100µA SYNC and
various magnitudes of D signals when EN=1. As D increases, one stable solution
vanishes.

Similar to the calculation of locked phases in bit storage scenario,
instead of visualizing LHS and RHS at each input value, the design
tools can sweep the magnitude of D and return all stable solutions
of (5) that predict the stable phases under lock. Fig. 11 shows
all these locked phase solutions predicted by the tools with various
magnitudes of D when EN=0 and 1. From it, designers are able to
get a comprehensive idea on how the choice of parameter AD can
affect the logic operation of the latch.

Figure 11: GAE equilibrium solutions with different D magnitudes when EN=1
and EN=0.

Furthermore, after adjusting parameters to make the circuit behave
as a D latch under steady state, designer also have to meet certain
timing specifications, i.e., they have to make sure that the phase can
flip to these desired steady states quickly enough. To simulate this
bit flipping behaviour efficiently, our design tools can directly run
transient simulation on the latch’s GAE macromodel in (4) and the
waveform of ∆φ(t) transiting from ∆φ0 to ∆φ1 offers direct phase-
domain visualization of the latch’s timing properties.

We use the D latch example in Fig. 9 again as illustration. Based
on just the GAE DC solutions shown in Fig. 11, any D signal with a
magnitude larger than 50µA seems suitable in the design. However,
results from transient simulations on the GAE (in Fig. 12) reveal
more valuable information. They not only confirm that 30µA is not
sufficient for the latch’s response to catch up with D for logic op-
eration, but also predict that even though 50µA D signal will flip
the phase eventually, the bit flipping speed is probably not desirable.
It is much slower than the flipping with 100µA, and the difference
in timing is much larger than that between 100µA and 150µA. It is
worth mentioning that transient simulations run on a scalar phase
domain differential equation as in (4) are much more efficient than
those run directly on the DAEs of oscillators. Their results are also
more straightforward in visualizing the latch’s operation. With such

facility made available by our design tools, designers can then ad-
just their phase-based latch design accordingly to meet timing specs
needed for logic computation.

Figure 12: Transient simulations on GAE predict the bit flipping timing be-
haviours.

While Fig. 9 demonstrates a D latch with level-based EN, with the
help of the design tools, more complicated oscillator latches with logic
inputs completely encoded in phases can be designed. Fig. 13 shows
our design of an SR latch and a D latch. Although their logic op-
erations (truth tables in Fig. 13) are straightforward to understand
from their structures, their practical implementations rely heavily on
the design tools.

Figure 13: Diagrams of completely phase-based SR and D latches.

One design consideration in such an SR latch is that the latch should
tolerate certain amount of mismatch between S and R. More specifi-
cally, when S and R have opposite phases but slightly different mag-
nitudes, the logic value in the latch should still hold. Put in other
words, the residue after cancelling opposite S and R shouldn’t flip
the bit stored in the latch. Similar to the example in Fig. 11, we
use the design tools to sweep the magnitudes of S and R and plot
all the stable solutions of (5) in Fig. 14. From it we conclude that
a conventional majority gate that adds its inputs with equal weights
w1 = w2 = w3 = 1 (black line in Fig. 14) is not suitable for SR latch
designs like Fig. 13. As an improvement, changing the weights of the
majority gate to w1 = w2 = 0.01, w3 = 1 (red lines) will make the
latch tolerant more mismatch between S and R while still securely
flip to desired logic state when S and R have the same phase with the
magnitude of V dd/2 = 1.5V .

Figure 14: GAE equilibrium solutions of an SR latch as in Fig. 13. The left
and right subfigures plot solutions with different magnitudes of S and R signals,
encoding the same and opposite phase logic values respectively.

4.3 Full System Transient Simulation with Phase Macromodels

With oscillator latches and logic gates, phase-based general-purpose
computing can be implemented by assembling them into FSMs. In
the operation of a phase logic FSM, when the logic values of inputs
change over time, i.e., their phase differences with respect to the
reference signal shift back and forth between 0 and 180◦, designers
need to know whether the system is indeed performing computation
properly with phase-based logic.

For this purpose, traditional transient simulation can be performed

Figure 16: Transient simulation of the serial adder in Fig. 15 with oscillator
latches replaced by their PPV macromodels. ∆φ = 0.5 indicates opposite phase
w.r.t. REF, thus encoding phase-based 0, while ∆φ = 1 encodes 1.

on the DAE of the full system:
d

dt
~qfull(~xfull) + ~ffull(~xfull) +~bfull(t) = ~0 (11)

However, if we separate system unknowns ~xfull into ~xosci and ~xother,
where ~xosci , i = 1, 2, · · · , k represents unknowns inside each of the k
oscillator latches, we know ~xosci can be approximated well with its
steady state response ~xosci(s) and its phase αi as in (2). As αi is
unbounded in simulation, similar to the formulation of GAE, we use
the locking phase error ∆φi = f0t+ f0αi(t)− f1t instead, such that

~xosci(t) = ~xosci(s)((f1t+∆φi(t))/f0) (12)

where ∆φi is governed by
d

dt
∆φi(t) = f0 − f1 + f0 · ~v

T

i (T1∆φi(t) + t) ·~bi(t) (13)

where external ~bi(t) can be calculated from ~xother based on circuit
connections.

The formulation in (13) is slightly different from the GAE in (4) in
that the fast varying mode is preserved instead of averaged out [4].
In this way, the full system can be formulated as

d

dt
~q′(~xother,∆~φ) + ~f ′(~xother,∆~φ) +~b(t) = ~0 (14)

where ∆~φ represents all ∆φis. For each oscillator latch, all its volt-
age and current unknowns are now represented by only one scalar.
Therefore, the system size is reduced.

Instead of formulating (14) analytically, our design tools allow users to
identify subcircuits that describe oscillator latches and replace them
with their PPV macromodels as in (13). Since the PPV of the latch
has already been calculated in previous stages of design, little compu-
tation is introduced in reformulating the full system into (14). Such
reformulation with PPV macromodels results in an equation system
not only with less unknowns, but also with unknowns that are more
directly related to the phase operation of the system.

Figure 15: Serial adder.

As illustration, in Fig. 15 we show
a simple FSM with 1-bit state: a se-
rial adder with inputs a, b and CLK
all encoded in phase logic. The D
latches in Fig. 15 are the same as in
Fig. 13 and their PPV macromodels
have already been constructed in the
previous stage of design in Section
4.2. Our design tools then use the
macromodels to replace the latches
and run transient simulation on the
resulting system. From the transient
results in Fig. 16, we observe the
phase transition of the two latches
(∆φ of Q1 and Q2) when adding a=b=101 sequentially, in partic-
ular how Q2 follows Q1’s phase in the master-slave flip-flop.

5. EXPERIMENTS AND VALIDATION

The design and simulation of oscillator latches as well as the FSM
made from them have already demonstrated the mechanisms and ca-
pabilities of our design tools in every stage of the implementation of
oscillator-based computing systems. In this section, using standard
transient simulation and breadboard circuit experiments, we further
validate that the system designed with our tools can behave as pre-

dicted.

5.1 Bit Flip Transient Simulation

Firstly, we simulate the transient behaviour of a phase-based logic bit
switching states in the oscillator latch as in Fig. 9. As discussed in
Section 4.2, our design tools can efficiently predict this key feature of
a given oscillator latch. As an experiment, we run SPICE-level tran-
sient simulation with the same magnitude of SYNC (100µA) as cho-
sen in Section 4.2 and flip D signal’s phase (with magnitude 150µA)
when EN=1. To study the phase transition of the latch, we plot the
output of the latch in Fig. 17. We also measure its zero crossings 2,
calculate their differences between those of the reference signal, and
plot the differences also in Fig. 17. Then we overlay the predictions
by GAE from our design tools (black curve) to compare against the
phase transition represented by zero crossings. From the comparison,
we observe that even though they don’t exactly overlap due to differ-
ent definitions of phase, they show similar results in the amount of
time needed for the latch to settle at the new phase state, verifying
the capability of the design tools in efficiently analyzing the timing
of oscillator latches.

Figure 17: SPICE-level transient simulation results of bit flipping in D latch
shown in Fig. 9: waveforms (top subfigure) and zero crossing differences between
V(out) and V(ref) compared with prediction from GAE in Fig. 12 (bottom
subfigure).

5.2 Breadboard Experiments Validating FSM’s Operation

With the help of the design tools, we have followed the design pro-
cedures of a phase-based FSM in Section 4. It’s logic operation as
a serial adder has been predicted to be valid based on full system
simulations with PPV macromodels. To demonstrate that such a
computing system predicted to be working in our design tools will
also work in reality, we build an FSM as in Fig. 15 on breadboards
(Fig. 18). In the actual implementation, the majority and not gates
are implemented with op-amps with resistive feedbacks.

Figure 18: Breadboard implementation of the serial adder in Fig. 15. The
green blocks highlight the flip-flop made from two D latches; the yellow block is
the combinational logic block that has the functionality of a full adder.

Fig. 19 and Fig. 20 show snapshots of test results seen from an oscil-
loscope. With thorough testing with various input combinations and
sequences, we conclude that the circuit in Fig. 18 implements a phase-
based serial adder. It is worth mentioning that to our knowledge, this
is the first phase-based state machine made with DC-powered oscilla-
tors, and a lot more trial and error would have been required without
the help of the design tools described in this paper.
2
With single-ended power supply we consider crossings with the offset V dd/2

on the rising slopes as zero crossings.

Figure 19: Test results of the master-slave D flip-flop as shown in the green
block of Fig. 18. The blue, green, yellow signals represent REF, Q1, Q2 respec-
tively. As CLK shifts between logic 1 and 0, Q1 (green) always follows input D
at falling edges of CLK, while Q2 (yellow) follows Q1 at rising edges of CLK.
This validates the simulation results shown in Fig. 16.

Figure 20: Selected test results of the serial adder as in Fig. 18. REF, sum,
cout are displayed in blue, green, yellow respectively. With the same inputs:
a=0 and b=1, the left subfigure shows sum=1, cout=0 when the state machine
is at carry=0 state; the right one shows sum=0, cout=1 when the state machine
is at carry=1 state.

6. CONCLUSIONS

In this paper we introduced design tools based on PPV and GAE
macromodels of oscillators for implementing oscillator-based comput-
ing systems. Following the design procedures of an example phase-
based FSM, we demonstrated the usage and capabilities of the tools in
all the stages of design, from predicting an oscillator latch’s bit stor-
age and flipping properties to the efficient simulation of the full FSM
system. With the help of the design tools we were able to implement
a phase-based state machine on breadboards. We plan to release the
design tools as open-source software to facilitate the designers in the
exploration of oscillator-based general-purpose computing.

7. REFERENCES

[1] A. Neogy and J. Roychowdhury. Analysis and Design of Sub-harmonically Injection
Locked Oscillators. In Proc. IEEE DATE, Mar 2012.

[2] H. Arsenault. Optical processing and computing. Elsevier, 2012.

[3] B. Behin-Aein, D. Datta, S. Salahuddin, and S. Datta. Proposal for an all-spin logic
device with built-in memory. Nature nanotechnology, 5(4):266–270, 2010.

[4] P. Bhansali and J. Roychowdhury. Gen-Adler: The generalized Adler’s equation for
injection locking analysis in oscillators. In Proc. IEEE ASP-DAC, pages 522–227,
January 2009.

[5] P. Bhansali and J. Roychowdhury. Injection locking analysis and simulation
ofÂăweakly coupled oscillator networks. In P. Li, L. M. Silveira, and P. Feldmann,
editors, Simulation and Verification of Electronic and Biological Systems, pages 71–93.
Springer Netherlands, 2011.

[6] A. Demir, A. Mehrotra, and J. Roychowdhury. Phase Noise in Oscillators: a Unifying
Theory and Numerical Methods for Characterization. IEEE Trans. Ckts. Syst. – I:
Fund. Th. Appl., 47:655–674, May 2000.

[7] A. Demir and J. Roychowdhury. A Reliable and Efficient Procedure for Oscillator PPV
Computation, with Phase Noise Macromodelling Applications. IEEE Trans. on
Computer-Aided Design, pages 188–197, February 2003.

[8] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark
silicon and the end of multicore scaling. SIGARCH Comput. Archit. News,
39(3):365–376, June 2011.

[9] E. Goto. New Parametron circuit element using nonlinear reactance. KDD Kenyku
Shiryo, October 1954.

[10] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson,
T.-J. King, J. Bokor, and C. Hu. Finfet-a self-aligned double-gate mosfet scalable to
20 nm. Electron Devices, IEEE Transactions on, 47(12):2320–2325, 2000.

[11] X. Lai and J. Roychowdhury. Capturing injection locking via nonlinear phase domain
macromodels. IEEE Trans. Microwave Theory Tech., 52(9):2251–2261, September 2004.

[12] A. M. Lyapunov. The general problem of the stability of motion. International Journal
of Control, 55(3):531–534, 1992.

[13] G. E. Moore et al. Cramming more components onto integrated circuits, 1965.

[14] K. S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, K. Kim, et al. A roadmap
for graphene. Nature, 490(7419):192–200, 2012.

[15] J. Roychowdhury. Boolean Computation Using Self-Sustaining Nonlinear Oscillators.
arXiv:1410.5016v1 [cs.ET], Oct 2014.
arXiv:1410.5016v1http://arxiv.org/abs/1410.5016v1/.

[16] M. M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen, H.-S. P. Wong, and S. Mitra.
Carbon nanotube computer. Nature, 501(7468):526–530, 2013.

[17] T. Mei and J. Roychowdhury. PPV-HB: Harmonic Balance for Oscillator/PLL Phase
Macromodels. In Proc. ICCAD, pages 283–288, Nov. 2006.

[18] T. Wang and J. Roychowdhury. PHLOGON: PHase-based LOGic using Oscillatory
Nanosystems. In Proc. Unconventional Computation and Natural Computation: 13th
International Conference, UCNC 2014, London, ON, Canada, July 14-18, 2014, LNCS
sublibrary: Theoretical computer science and general issues. Springer, 2014.

[19] J. von Neumann. Non-linear capacitance or inductance switching, amplifying and
memory devices. 1954.

[20] Z. Wang, X. Lai, and J. Roychowdhury. PV-PPV: Parameter Variability Aware,
Automatically Extracted, Nonlinear Time-Shifted Oscillator Macromodels. In Proc.
IEEE DAC, San Diego, CA, June 2007.

[21] R. L. Wigington. A New Concept in Computing. Proceedings of the Institute of Radio
Engineers, 47:516–523, April 1959.

[22] L. Wilson. International technology roadmap for semiconductors (itrs). 2013.

[23] X. Lai and J. Roychowdhury. TP-PPV: Piecewise Nonlinear, Time-Shifted Oscillator
Macromodel Extraction For Fast, Accurate PLL Simulation. In Proc. ICCAD, pages
269–274, November 2006.

